
Intuitive Performance Engineering at the Exascale
with TAU and TAU Commander

Presented to
ATPESC 2017 Participants

Dr. John C. Linford
ParaTools, Inc.
Q Center, St. Charles, IL (USA)
Date 08/08/2017

ATPESC 2017, July 30 – August 11, 20172

Cray-2 (1985)

• 4 vector processors
• 1.9 gigaflops (0.0095 gigaflops/Watt)

ATPESC 2017, July 30 – August 11, 20173

Aurora (1985+34)

• >3,200,000 cores
• 180 petaflops (5.62 gigaflops/Watt)

ATPESC 2017, July 30 – August 11, 20174

Your Brain is Not Enough

• Supercomputers are incomprehensibly complex.
• Naïve optimization may harm performance.
• Performance engineering tools are essential for realizing

performance at scale.

< <

ATPESC 2017, July 30 – August 11, 20175

512 Processes

NASA, DOD, DOE, Industry

“These days I get excited about 1-2% speedups that I find....quite
unusual to find something of this magnitude these days, especially
with just a 2-line fix in the code! :)”

14,400 Processes

33% Faster
3x Faster

Software Performance Engineering

ATPESC 2017, July 30 – August 11, 20177

Identifying and Resolving Performance Issues

No

No

Profile Yes

Yes

Yes

Refine the
Profile

File I/O

Memory

Compute

No

No

Buffers, data formats,
in-memory filesystems

Collectives, blocking,
non-blocking, topology,

load balance

Bandwidth/latency,
cache utilization

Vectors, branches,
integer, floating point

Yes

Identify Hotspots Focus Optimization

50x

10x

5x

2x

Communication

ATPESC 2017, July 30 – August 11, 20178

• Universal tool or integrated toolkit
• Unbiased, accurate measurements

– File I/O: serial and parallel
– Communication: inter- and intra-node
– Memory: allocation and access
– CPU: vectorization, cache utilization, etc.

• Minimal overhead
– Provide multiple measurement methods
– Focus on one performance aspect at a time

• Easy to use
– Intuitive, systematic, and well documented
– Easy to understand and configure

TAU Commander

ATPESC 2017, July 30 – August 11, 20179

• Say where you’re going, not how to get there
• Experiments give context to the user’s actions

– Defines desired metrics and measurement approach
– Defines operating environment
– Establishes a baseline for error checking

TAU Commander’s Approach

vs.

ATPESC 2017, July 30 – August 11, 201710

• Target
– Installed software
– Available compilers
– Host architecture/OS

• Application
– MPI, OpenMP, CUDA,

OpenACC, etc.

• Measurement
– Profile, trace, or both
– Sample, source inst…

T-A-M Model for Performance Engineering

Target

Measurement

Application

Experiment =
(Target, Application, Measurement)

ATPESC 2017, July 30 – August 11, 201711

Target 0 … Target N

Which platform is best for my application?

Measurement

Application

• Many targets:
• Different MPI implementations
• Different CPU architectures
• GPU vs MIC
• Cray vs SGI

• One measurement
• One application

ATPESC 2017, July 30 – August 11, 201712

What are the performance characteristics of my application?

• One target
• Many measurements:

• File I/O
• Communication
• Memory allocation
• Performance counters
• Vectorization

• One application
Target 0

Measurement
0

Measurement
NApplication

…

ATPESC 2017, July 30 – August 11, 201713

How well does my target perform various tasks?
• One target
• One measurement
• Many applications:

• Compute bound
• Dense LA

• Memory bound
• Sparse LA
• Graph

• Scaling
• Thread-level
• Process-level

Target 0

Measurement

Application
0 … Application

N

ATPESC 2017, July 30 – August 11, 201714

Getting Started with TAU Commander
1. tau initialize
2. tau oshf90 *.f90 -o foo
3. tau oshrun -np 64 ./foo
4. tau show

• This works on any supported
system, even if TAU is not
installed or has not been
configured appropriately.

• TAU and all its dependencies
will be downloaded and installed
if required.

Just put `tau` in front
of everything and
see what happens.

ATPESC 2017, July 30 – August 11, 201715

TAU Commander Online Help

Gathering Performance Data

16

ATPESC 2017, July 30 – August 11, 201717

Measurement Approaches

Profiling shows how much time Tracing shows the order of events

ATPESC 2017, July 30 – August 11, 201718

Types of Performance Profiles
• Flat profiles

– Metric (e.g., time) spent in an event
– Exclusive/inclusive, # of calls, child

calls, …

• Callpath profiles
– Time spent along a calling path (edges

in callgraph)
– “main=> f1 => f2 => MPI_Send”

• Phase profiles
– Flat profiles under a phase (nested

phases allowed)
– Default “main” phase
– Supports static or dynamic (e.g. per-

iteration) phases

D
ata Size

ATPESC 2017, July 30 – August 11, 201719

How much data do you want?

Limited
Profile

Flat
Profile

Loop
Profile

Phase
Profile

Callpath
Profile

Trace

All levels support multiple metrics/counters

O(KB) O(TB)

ATPESC 2017, July 30 – August 11, 201720

Performance Data Measurement

Direct via Probes Indirect via Sampling

• Exact measurement
• Fine-grain control
• Calls inserted into code

• No code modification
• Minimal effort
• Relies on debug symbols (-g)

call TAU_START(‘potential’)
// code
call TAU_STOP(‘potential’)

TAU Commander Case Study

ATPESC 2017, July 30 – August 11, 201722

$ cd ISx

$ tau initialize --shmem

Step 1: Initialize TAU Project

• Creates a new project configuration using defaults
• Project files exist in a directory named “.tau”
• Like git, all directories below the directory containing the

“.tau” directory can access the project
• E.g. `tau dashboard` works in miniapp1/baseline

ATPESC 2017, July 30 – August 11, 201723

Project Initialization (`tau initialize`)

Compiler detection

Project initialization

Download and install PDT

TAU installation progress

ATPESC 2017, July 30 – August 11, 201724

Project Dashboard (`tau dashboard`)

ATPESC 2017, July 30 – August 11, 201725

Step 2: Use `tau` to compile

Prepend `tau` command to
compiler command

Compile as normal

• TAU Commander constructs a new compilation command line.
• May replace compiler commands with TAU’s compiler wrapper scripts.
• May set environment variables, parse configuration files, etc.
• If no changes are required then nothing is changed.

ATPESC 2017, July 30 – August 11, 201726

Step 3: Use `tau` to run

TAU Commander sets environment variables

Application executes, possibly with tau_exec

Prepend `tau` command to
command line

New data is added to the
performance database

ATPESC 2017, July 30 – August 11, 201727

Step 4: Use `tau` to view data (`tau show`)

ATPESC 2017, July 30 – August 11, 201728

Create a New Experiment
Select a new measurement to

create a new experiment

TAU Performance System®
automatically reconfigured and
recompiled.

User advised that an application rebuild is
required to use source-based instrumentation.

ATPESC 2017, July 30 – August 11, 201729

Create and Select KNL Target

Performance Data Analysis

ATPESC 2017, July 30 – August 11, 201731

How Much Time per Code Region?

ATPESC 2017, July 30 – August 11, 201732

How Many Instructions per Code Region?

ATPESC 2017, July 30 – August 11, 201733

How Many L1 or L2 Cache Misses?

ATPESC 2017, July 30 – August 11, 201734

How Much Memory Does the Code Use?

High-water mark

ATPESC 2017, July 30 – August 11, 201735

How Much Memory Does the Code Use?

Total allocated/deallocated

ATPESC 2017, July 30 – August 11, 201736

Where is Memory Allocated / Deallocated?

Allocation / Deallocation Events

ATPESC 2017, July 30 – August 11, 201737

What are the I/O Characteristics?

Bytes written to each file

Write bandwidth per file

ATPESC 2017, July 30 – August 11, 201738

What are the I/O Characteristics?

Peak MPI-IO Write Bandwidth

ATPESC 2017, July 30 – August 11, 201739

How Much Time is spent in Collectives?

Message sizes

Time spent in collectives

ATPESC 2017, July 30 – August 11, 201740

3D Profile Visualization

ATPESC 2017, July 30 – August 11, 201741

3D Communication Visualization

ATPESC 2017, July 30 – August 11, 201742

3D Topology Visualization

ATPESC 2017, July 30 – August 11, 201743

How Does Each Routine Scale?

MPI_Waitall

WRITE_SAVEFILE

ATPESC 2017, July 30 – August 11, 201744

How Does Each Routine Scale?

ATPESC 2017, July 30 – August 11, 201745

Which Events Correlate with Runtime?

ATPESC 2017, July 30 – August 11, 201746

When do events occur?

ATPESC 2017, July 30 – August 11, 201747

Different Nodes, Different Timelines

ATPESC 2017, July 30 – August 11, 201748

Zoom In to View Individual Communication API Calls

ATPESC 2017, July 30 – August 11, 201749

Where do Events Occur?
• Callsites differentiate calls to

common functions
• Separate time spent in API

routines that are called
throughout the code.

ATPESC 2017, July 30 – August 11, 201750

What Caused My Application to Crash?

ATPESC 2017, July 30 – August 11, 201751

What Caused My Application to Crash?
Right-click to see source code

ATPESC 2017, July 30 – August 11, 201752

What Caused My Application to Crash?

Error Highlighted in Source Browser

Conclusion

ATPESC 2017, July 30 – August 11, 201754

www.taucommander.com

www.github.com/ParaToolsInc/taucmdr

Free,	open	source,	BSD	license

Downloads

ATPESC 2017, July 30 – August 11, 201755

• Engility

• HPCMP DoD PETTT Program

• Department of Energy
– Office of Science
– Argonne National Laboratory
– Oak Ridge National Laboratory
– NNSA/ASC Trilabs (SNL, LLNL, LANL)

• National Science Foundation

• University of Tennessee

• University of New Hampshire

• University of Oregon

• TU Dresden

• Research Centre Jülich

Acknowledgements

