
ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	1	of	14	

		

	

	

	
	

ParaTools	ThreadSpotter	Analysis	of	HELIOS	
	

	
ParaTools,	Inc.	
2836	Kincaid	St.		
Eugene,	OR	97405		
(541)	913-8797		

info@paratools.com	

	

	 	

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	2	of	14	

		

	

	

1	 INTRODUCTION	 3	
1.1	 PARATOOLS	THREADSPOTTER	 3	

2.	 PREPARING	AND	COLLECTING	PERFORMANCE	DATA	 3	
2.1	 COLLECTING	DATA	 5	

3.	 VIEWING	REPORTS	AND	PERFORMANCE	DATA	 5	

4.	 SUMMARY	 14	

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	3	of	14	

		

	

	

1 Introduction	
High	performance	computing	requires	good	programming	techniques	to	ensure	good	scalability,		
and	effective	use	of	compute	resources.		Performance	analysis	tools	help	software	developers	
improve	 efficiency	 and	 increase	 software	 performance	 for	 efficient	 use	 of	 HPC	 systems.			
ParaTools	ThreadSpotter	conducts	performance	analysis	by	collecting	data	on	data	movement	
and	reuse.	

1.1 ParaTools	ThreadSpotter	

ParaTools	ThreadSpotter	differs	from	other	profiling	tools	in	its	ability	to	analyze,	interpret,	and	
prioritize	performance	bottlenecks	and	relate	these	back	to	the	developer	in	plain	English.		It	is	
easy	to	use	since	it	operates	on	un-modified	binaries	and	captures	sparse	memory	fingerprints	
through	periodic	sampling.		It	presents	its	findings	and	recommendations	in	an	HTML	report	that	
shows	key	memory	problems	alongside	the	application	source	code	and	callgraph,	making	it	easy	
to	see	where	improvements	may	be	introduced	into	the	code.		It	can	detect	a	range	of	issues	
including	wasted	cache	space,	false	sharing	of	cache	lines,	and	a	lack	of	data	reuse,	all	of	which	
squander	precious	l1	and	l2	cache	and	are	exacerbated	by	increasing	the	number	of	threads	per	
core.		No	other	tool	has	these	capabilities.	

ParaTools	enhanced	ThreadSpotter	by	making	it	easier	to	work	with	MPI	applications.				This	short	
tutorial	 walks	 through	 the	 execution	 of	 a	 basic	 ThreadSpotter	 Analysis	 using	 the	 CREATE-AV	
Helios	application	running	v7-tram	on	lightning.	

2. Preparing	and	collecting	performance	data	
ThreadSpotter	works	best	with	the	Intel	compiler.				The	important	modules	to	load	for	building	
on	 lightning	are	the	following	modules:	create,	PrgEnv-intel,	 intel/14.0.2.144.	 	 	 I	executed	the	
following	when	preparing	to	build	and	run	Helios	on	lightning	with	ThreadSpotter:

module load create
module swap PrgEnv-cray PrgEnv-intel
module swap intel intel/14.0.2.144
module swap cray-mpich cray-mpich/7.2.6

Depending	on	what	modules	you	already	have	loaded	these	may	or	may	not	be	the	appropriate	
commands	to	run.			Here	is	a	full	list	of	modules	loaded	for	the	Helios	binary	in	this	analysis:

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	4	of	14	

		

	

	

module list
Currently Loaded Modulefiles:
 1) modules/3.2.10.3 16)/app/startup/login2.module
 2) eswrap/1.3.3-1.020200.1278.0 17) create
 3) switch/1.0-1.0502.60522.1.61.ari 18) cray-libsci/13.2.0
 4) craype-network-aries 19) udreg/2.3.2-1.0502.10518.2.17.ari
 5) intel/14.0.2.144 20) ugni/6.0-1.0502.10863.8.29.ari
 6) craype/2.4.2 21) pmi/5.0.10-1.0000.11050.0.0.ari
 7) cray-mpich/7.2.6 22) dmapp/7.0.1-1.0502.11080.8.76.ari
 8) pbs/12.2.404.152084 23) gni-headers/4.0-1.0502.10859.7.8.ari
 9) craype-ivybridge 24) xpmem/0.1-2.0502.64982.5.3.ari
 10) java/jdk1.8.0_51 25) dvs/2.5_0.9.0-1.0502.2188.1.116.ari
 11) /app/startup/shell.module 26) alps/5.2.4-2.0502.9774.31.11.ari
 12) /app/startup/alias.module 27) rca/1.0.0-2.0502.60530.1.62.ari
 13) costinit 28) atp/1.8.3
 14) /app/startup/login.module 29) PrgEnv-intel/5.2.82
 15) /app/startup/set_ACCOUNT.module	

	

Prior	to	building	run:
source $CREATE_HOME/av/externals/ptoolsrte-
0.5.2alpha5_sles11sp1_x86_64/etc/ptoolsrte.bashrc.intel14.0
.2.144_mpich7.2.6	

	

Next	add	-g	so	that	HELIOS	is	built	with	symbols	and	ThreadSpotter	will	be	able	to	resolve	line	
numbers	and	provide	more	meaningful	information.			To	do	this	add	"-g"	to	Intel	compiler	family	
flags	in	cmake/setup.cmake	and	cmake/avcore.cmake.		Next	build	HELIOS	in	the	usual	fashion.		
For	the	binary	used	in	this	study,	this	was	done	with	the	following	commands:

mkdir build
cd build
../configure -t ../config/install/lightning.xml -v -i .

It	is	important	to	verify	that	ThreadSpotter	and	TAU	are	properly	installed	on	the	system	and	to	
update	your	path	to	include	the	appropriate	directory.			At	the	time	of	this	tutorial	these	packages	
were	installed	on	lightning	and	the	appropriate	directories	to	add	to	the	path	were:	
$PET_HOME/pkgs/threadspotter/bin (or /app/comenv/pkgs/threadspotter/bin)

$PET_HOME/pkgs/tau/craycnl/bin (or /app/comenv/pkgs/tau/craycnl/bin)

The	latest	stable	version	of	ParaTools	ThreadSpotter	is	installed	on	many	of	the	DSRC	systems.	
ParaTools	 ThreadSpotter	 can	 be	 used	 by	 adding	 $PET_HOME/pkgs/threadspotter-

VERSION/bin	 to	 $PATH.	 	 	 Likewise,	 TAU	 is	 typically	 in	 $PET_HOME/pkgs/tau-

VERSION/craycnl/bin	(or	$PET_HOME/pkgs/tau-VERSION/x86_64/bin	on	a	SGI	systems).	

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	5	of	14	

		

	

	

2.1 Collecting	Data	

To	 collect	 data	 the	 directories	 above	 must	 be	 listed	 in	 the	 path	 when	 Helios	 is	 executed.				
ThreadSpotter	is	invoked	using	extensions	to	TAU.			The	flags	to	invoke	threadspotter	are	-ptts	
options	together	with	the	--tau	option.		The	.pbs	script	used	to	collect	this	data	is	shown	below:
#!/bin/bash
#PBS -A <PROJECTNAME>
#PBS -l walltime=05:10:00
#PBS -N sphere
#PBS -q standard
#PBS -j oe
#PBS -l application=helios
#PBS -l select=32:ncpus=24:mpiprocs=8
#PBS -V

echo $PBS_O_WORKDIR
cd $PBS_O_WORKDIR

too paths here
export PATH=$PATH:$PET_HOME/pkgs/threadspotter/bin:$PATH
export PATH=$PATH:$PET_HOME/pkgs/tau/craycnl/bin:$PATH

Check -aprun-num matches csi "-p" flag
export TAU_EXEC_FLAGS="-T helios -ptts -ptts-num=256 -ptts-sample-flags=-g1"
YOUR PATH HERE
/p/home/drmackay/HELIOS-v7-r820/build/bin/csi --tau -p 256	

It	is	not	necessary	to	collect	ThreadSpotter	data	for	a	long	run.		The	data	collected	here	was	run	
for	7	time	steps,	but	3	or	4	should	be	sufficient.				So	adjust	nsteps	to	an	appropriate	number.			
ThreadSpotter	will	cause	time	dilation	and	the	code	will	run	slower.		By	default	ThreadSpotter	
will	collect	data	and	write	a	.smp	file	for	each	MPI	rank.		This	file	is	then	processed	into	a	report	
(.tsr	file),	and	this	can	then	be	processed	into	an	html	report.				The	ThreadSpotter	options	used	
for	Tau	in	this	case	handles	the	conversion	of	the	.smp	files	into	.html	viewable	reports.	

3. Viewing	reports	and	performance	data	

When	the	job	completes	there	will	be	a	new	directory	named	ptts.		The	directory	ptts	contains	
the	 data	 for	 each	 MPI	 rank.	 	 Typically	 a	 developer	 will	 open	 the	 reports	 by	 opening	
./ptts/index.html	in	a	web	browser	such	as	firefox.			I	did	not	find	a	web	browser	on	lightning	so	
the	data	was	moved	 to	 thunder	and	 the	data	was	 viewed	by	going	 to	 the	ptts	directory	and	
entering:			firefox index.html.		The	resulting	view	is	shown	in	Figure	1.	

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	6	of	14	

		

	

	

	
Figure	1:	View	of	index.html	produced	by	ThreadSpotter.	

Please	notice	there	is	a	line	for	each	MPI	rank.		In	addition,	there	are	four	columns:		Memory	
Bandwidth,	Memory	Latency,	Data	Locality	and	Thread	Communication/Interaction.					There	is	
a	mini	dashboard	for	each	column	and	each	row.		Scanning	the	first	view	it	is	evident	that	
Memory	Bandwidth	is	not	critical	bottleneck	for	any	of	the	MPI	ranks.				Data	Locality	is	
consistently	high	on	the	dashboard	as	a	bottleneck	for	all	MPI	ranks.				The	importance	of	
Memory	Latency	varies	across	the	MPI	ranks.			To	see	the	specifics	the	developer	simply	clicks	

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	7	of	14	

		

	

	

on	the	rank	number	in	the	far	left	column	to	see	the	data	for	a	specific	rank	number.			In	this	
case	I	select	mpi	rank	13,	the	resulting	view	is	shown	in	Figure	2.	
			

	
Figure	2:	MPI	Rank	13	summary	report.	

Selecting	the	button	“Open	the	Report”	provides	a	list	of	all	the	issues	identified	by	ParaTools	
ThreadSpotter.	 	 	 This	 list	 provides	 an	 issue	 number	 for	 reference	 as	 well	 as	 issue	 type	 and	
information	about	bandwidth,	fetches,	write-backs,	fetch	utilization	and	write-back	utilization.					
This	is	shown	below	in	Figure	3.	

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	8	of	14	

		

	

	

	
Figure	3:	Node	13	initial	issue	view.	

Normally	at	this	point	we	would	examine	some	of	the	issues	reported.			In	this	tutorial	we	want	
to	illustrate	the	best	use	of	cache	analysis.		The	default	settings	for	ParaTools	ThreadSpotter	is	to	
provide	a	report	based	on	L3	cache	model.				On	the	lightning	system	it	is	felt	an	l2	cache	analysis	
model	will	provide	better	hints	for	tuning.		The	l2	cache	analysis	will	provide	tuning	tips	that	will	
carry	over	 to	 tuning	 for	 Intel	many	core	Xeon	Phi	 systems	as	well.	 	 	 So	we	will	 show	how	 to	
generate	an	l2	cache	model	report.		The	information	collected	about	data	movement	and	usage	
is	 sufficient	 for	generating	an	 l2	 cache	 report.	 	 It	 is	not	necessary	 to	collect	data	again.	 	 	 	 To	
generate	 the	 desired	 report	 we	 set	 the	 following	 environment	 variables:		
TAU_TS_REPORT_FLAGS="--level 2 -r lru".	 	 This	 instructs	 the	ThreadSpotter	analysis	 to	
consider	l2	cache	movement	using	a	least	recently	used	replacement	policy	for	the	cache.		To	the	
runtime	option	we	add:	-ptts-post	 	which	 tells	Tau	 to	 just	 run	post-process	analysis	on	 the	
existing	.smp	files.				The	batch	file	to	generate	level	2	cache	analysis	with	a	least	recently	used	
analysis	policy	is	shown	below:

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	9	of	14	

		

	

	

PBS -A <project id>
#PBS -l walltime=xx:yy:zz
#PBS -N sphere
#PBS -q standard
#PBS -j oe
#PBS -l application=helios
#PBS -l select=32:ncpus=24:mpiprocs=8
#PBS -V

echo $PBS_O_WORKDIR
cd $PBS_O_WORKDIR

YOUR PATH HERE
export PATH=$PATH:$PET_HOME/pkgs/threadspotter/bin:$PATH
export PATH=$PATH:$PET_HOME/pkgs/tau/craycnl/bin:$PATH

Check -aprun-num matches csi "-p" flag
export TAU_TS_REPORT_FLAGS="--level 2 -r lru"
export TAU_EXEC_FLAGS="-T helios -ptts -ptts-num=256 -ptts-sample-
flags=-g1 -ptts-post"
/p/home/drmackay/HELIOS-v7-r820/build/bin/csi --tau -p 256	

	

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	10	of	14	

	

	

	

	
Figure	4:	Analysis	for	l2	cache	with	Least	Recently	Used	policy.	

The	index	report	generated	is	very	similar	to	the	original	L3	cache	report.			A	noticeable	exception	
is	 that	 the	 impact	 of	memory	 latency	 is	 not	 as	 high.	 	 Data	 locality	 remains	 the	 predominant	
bottleneck	(See	Figure	4).			

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	11	of	14	

	

	

	

	
Figure	5:	Details	of	issue	26	-	Fetch	Utilization	(Node	13).	

Once	again	node	13	is	selected	for	more	detailed	analysis.	 	We	immediately	select	“Open	the	
Report”	button	as	was	previously	shown;	this	document	skips	a	redundant	screenshot	of	that	
step.	 	 	 	Now	we	drill	down	into	one	of	the	 issues.	 	Click	on	issue	26	on	the	top	left	hand	side	
opening	up	details	of	issue	26	–	Fetch	Utilization.		The	details	for	issue	26	open	up	as	shown	in	
Figure	5.	

The	right-hand	pane	is	now	filled	with	the	source	code.					The	pane	below	the	list	provides	details	
such	as	statistics	and	instructions	involved.					You	may	need	to	click	the			box	in	the	bottom	pane	
to	expand	the	details	displayed.		To	reverse	this,	click	on	the					box	and	the	details	will	be	hidden	
and	return	to	a	box	with	the	heading	next	to	it.			It	is	important	to	note	that	there	is	not	just	a	
single	issue	associated	with	the	code	segments.				Fetch	Utilization	is	listed	as	the	highest	issue	
identified.			The	report	shows	that	Fetch-hotspot	is	also	associated	with	this	line	of	code.			Looking	
at	line	535	in	the	annotated	source	code	there	are	additional	boxes	associated	with	line	535	–	
the	boxes	associated	with	line	535	represent	Fetch	Utilization,	Fetch	Hotspot	and	loop	fusion.				If	

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	12	of	14	

	

	

	

you	click	on	the	box	of	each	line	of	535	the	associated	issue	will	be	highlighted	in	the	bottom	
pane	on	the	left-hand	side.			Clicking	those	boxes	on	line	535	reveals	that	the	top	three	issues	in	
this	report;	issues	26,	27	and	34	all	involve	line	535	(Alternatively	you	can	click	on	the	number	in	
the	far-left	column	and	see	that	each	of	the	top	three	issues	involves	the	same	line).		If	you	click	
on	the	circle	containing	a	question	mark	(?)	next	to	the	 Issue	#26	Fetch	Utilization	 line	 in	the	
lower	 pane	 –	 a	 new	 window	 will	 open	 up	 explaining	 what	 fetch	 utilization	 means	 in	
ThreadSpotter	reports.		Fetch	utilization	percentages	are	a	percentage	of	a	cache	line	that	is	used	
by	the	code	operations.		For	example	if	I	were	striding	through	a	linear	one	dimensional	array	by	
2	(array[0],	array[2],	array[4],	.	.	.)	using	only	half	the	elements	in	the	array.			The	computer	will	
bring	 in	the	full	cache	 line	which	 includes	array[1],	array[3],	 .	 .	 .	but	those	data	 items	are	not	
actually	used	–	so	I	am	only	utilizing	half	of	the	data	I	am	bringing	into	cache;	this	is	a	50%	fetch	
utilization.		To	improve	fetch	utilization	data	might	be	restructured	so	that	the	storage	pattern	
matches	the	data	access	patterns.	

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	13	of	14	

	

	

	

	
Figure	6:	Issue	34	-loop	fusion	report	Node	13.	

In	Figure	6	the	view	is	shown	when	the	loop	fusion	box	(purple	icon)	is	clicked	in	the	right-hand	
pane	on	line	535.		This	particular	issue	suggests	the	developer	explore	methods	to	fuse	the	loop	
in	file	timestepping.F90	line	535	and	line	521.						All	three	of	the	issues	–	26,	27,	34	relate	to	data	
reuse	around	line	535.					Suggestions	to	improve	performance	are	to	structure	the	code	to	reuse	
data	while	it	is	in	cache	or	even	better	while	it	is	in	the	processor	registers.					The	loops	in	lines	
521	and	535	each	stride	through	the	same	array	and	each	loop	brings	it	back	into	cache.		By	the	

ParaTools,	Inc.	 	 ParaTools	ThreadSpotter	Analysis	of	HELIOS:	A	Tutorial	

	

	

Distribution	Statement	A:	Approved	for	public	release.	Distribution	is	unlimited	 Page	14	of	14	

	

	

	

time	a	loop	is	completed	the	beginning	of	an	array	or	the	data	at	the	beginning	of	the	array	may	
be	flushed	from	cache	and	need	to	be	fetched	in	again	for	the	next	 loop.	 	 	 	By	exploring	loop	
fusion	or	restructuring	the	code	to	work	in	blocks	or	chunks	of	data	it	may	be	possible	to	perform	
the	operations	of	each	associated	loop	on	the	data	while	it	is	the	processor	registers	or	in	the	
close	l2	cache.					This	ordering	of	data	use	is	the	predominant	suggestion	ParaTools	ThreadSpotter	
analysis	reveals.				Restrictions	on	listing	source	code	prevent	more	detailed	analysis	presentation	
in	this	document.			The	top	6	issues	reported	in	this	ThreadSpotter	analysis	all	relate	to	the	code	
segments	between	lines	517	and	line	535.	

4. Summary	
ThreadSpotter	has	been	enhanced	to	work	with	multi-langauge	codes	such	as	HELIOS	and	work	
well	in	an	MPI	environment.		This	tutorial	demonstrates	how	ThreadSpotter	can	be	run	on	HELIOS	
to	generate	performance	analysis	reports.			Navigation	of	the	performance	analysis	reports	are	
demonstrated	to	view	the	various	issues	reported.					The	method	to	find	additional	information	
about	any	topic	in	the	help	can	be	found	for	clicking	on	the	circle	question	mark	{?)	next	to	any	
issue	and	additional	information	explaining	what	the	issue	means	and	possible	ideas	for	tuning	
the	software	will	be	opened	up.	

	

	

