
1

Parallel Performance Evaluation
Tools: TAU, PAPI, Scalasca and

Vampir
Two day tutorial at LLNL

Building 453 R1001 (Armadillo), May 26-27, Livermore, CA

Sameer Shende

sameer@paratools.com

http://www.paratools.com/llnl09

2

Outline

• Outline and workshop goals

• Part I: TAU: A quick reference

• Part II: Introduction to performance engineering

• Part III: PAPI

• Part IV: TAU

• Part V: Vampir/VNG

• Part VI: Scalasca/KOJAK

• Lab Session: PAPI, TAU, Vampir and Scalasca examples

Slide #

2

8

77

105

119

266

307

385

2

3

Outline

• Day 1:
– Introduction to performance evaluation tools: TAU, PAPI, Scalasca, and

Vampir
– Hands-on:

– TAU instrumentation at routine, loop level, PAPI hardware performance
counter data collection, derived metrics, analyzing performance using TAU’s
paraprof profile browser, using Performance database (PerfDMF), memory
evaluation, leak detection

• Day 2:
– Scalasca, TAU PerfExplorer, VampirServer
– Hands-on:

– Scalasca bottleneck detection tools, PerfExplorer, trace visualization,
workshop examples including the NAS Parallel Benchmarks 3.1

4

Workshop Goals

• This tutorial is an introduction to portable performance evaluation tools.

• You should leave here with a better understanding of…
– Concepts and steps involved in performance evaluation
– Understanding key concepts in improving and understanding code performance
– How to collect and analyze data from hardware performance counters using PAPI
– How to instrument your programs with TAU

– Automatic instrumentation at the routine level and outer loop level
– Manual instrumentation at the loop/statement level

– Measurement options provided by TAU
– Environment variables used for choosing metrics, generating performance data
– How to use the TAU’s profile browser, ParaProf
– How to use TAU’s database for storing and retrieving performance data
– General familiarity with TAU’s use for Fortran, Python, C++,C, MPI for mixed

language programming
– How to generate trace data in different formats
– How to use Scalasca for detecting performance bottlenecks
– How to analyze trace data using Vampir, and Jumpshot
– Facilities provided by the Eclipse PTP integrated development environment for

parallel programs

3

5

Performance Engineering

characterization

Performance
Tuning

Performance
Diagnosis

Performance
Experimentation

Performance
Observation

hypotheses

properties

• Instrumentation
• Measurement
• Analysis
• Visualization

Performance
Technology

• Experiment
management

• Performance
storage

Performance
Technology

• Data mining
• Models
• Expert systems

Performance
Technology

• Optimization process

• Effective use of performance technology

6

Performance Optimization Cycle

• Expose factors

• Collect performance data

• Calculate metrics

• Analyze results

• Visualize results

• Identify problems

• Tune performance

Instrumentation

Presentation

Measurement

Optimization

Analysis

4

7

More Information

• PAPI References:
– PAPI documentation page available from the PAPI website:

http://icl.cs.utk.edu/papi/

• TAU References:
– TAU Users Guide and papers available from the TAU website:

http://tau.uoregon.edu/

• VAMPIR References
– VAMPIR-NG website

http://www.vampir.eu/

• Scalasca/KOJAK References
– Scalasca documentation page

http://www.scalasca.org/

8

TAU: A Quick Reference

Part I: TAU: A Tutorial

5

9

TAU Performance System

• http://tau.uoregon.edu/

• Multi-level performance instrumentation
– Multi-language automatic source instrumentation

• Flexible and configurable performance measurement

• Widely-ported parallel performance profiling system
– Computer system architectures and operating systems
– Different programming languages and compilers

• Support for multiple parallel programming paradigms
– Multi-threading, message passing, mixed-mode, hybrid

• Integration in complex software, systems, applications

10

What is TAU?

• TAU is a performance evaluation tool
• It supports both parallel profiling and tracing
• Profiling shows you how much (total) time was spent in each routine (event)
• Tracing shows you when events take place in each process along a timeline
• Profiling and tracing can measure time as well as hardware performance counters
• TAU uses a package called PDT for automatic instrumentation of the source code
• With PDT, TAU can instrument routine, loop, phase, I/O, and memory
• TAU can also use your compiler to insert the instrumentation at routine boundaries
• TAU can throttle the insignificant lightweight routines at runtime to reduce

perturbation. It can also subtract the timer overhead at runtime to compensate.
• TAU runs on all HPC platforms and it is free (BSD style license)
• TAU has instrumentation, measurement and analysis tools

– ParaProf is TAU’s 3D profile browser, PerfDMF is the TAU database tool

• To use TAU, all you need to do is set a couple of environment variables and
substitute the name of your compiler with a TAU shell script (e.g., tau_f90.sh)

6

11

Program Database Toolkit (PDT)

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE

PDBhtml

SILOON

CHASM

TAU_instr

Program
documentation

Application
component glue

C++ / F90/95
interoperability

Automatic source
instrumentation

12

Automatic Source-Level Instrumentation in TAU
using Program Database Toolkit (PDT)

tau_instrumentor

Parsed
program

Instrumentation
specification file

Instrumented
source

TAU source
analyzer

Application
source

7

13

ParaProf – Flat Profile (NAS BT)

How is MPI_Wait()
distributed relative to
solver direction?

Application routine names
reflect phase semantics

14

ParaProf – Phase Profile (NAS BT)

Main phase shows nested phases and immediate events

8

15

ParaProf – 3D Full Profile (Miranda, LLNL)

16k processors

16

ParaProf – 3D Full Profile

9

17

ParaProf – 3D Scatterplot

• Each point
is a “thread”
of execution

• A total of
four metrics
shown in
relation

• 3D
profile
visualization
library

– JOGL

32k processors

ParaProf’s Source Browser: Loop Level Instrumentation

10

19

Comparing Effects of MultiCore Processors

� AORSA2D on 4k cores
� PAPI resource stalls
� Blue is single node
� Red is dual core

20

Comparing FLOPS: MultiCore Processors

� AORSA2D on 4k cores
� Floating pt ins/second
� Blue is dual core
� Red is single node

11

21

PerfDMF: Performance Data Mgmt. Framework

22

PerfExplorer: Comparing Relative Speedup on Different
Architectures

12

23

Usage Scenarios: Evaluate Scalability

24

Performance Regression Testing

13

25

Profiling

• Recording of aggregated information
– Counts, time, …

• … about program and system entities
– Functions, loops, basic blocks, …
– Processes, threads

• Methods
– Event-based sampling (indirect, statistical)

– Open|SpeedShop, PerfSuite, HPCToolkit, gprof,…
– Direct measurement (deterministic)

– TAU, VampirTrace, Scalasca,…

26

Direct Observation: Events

• Event types
– Interval events (begin/end events)

– measures performance between begin and end
– metrics monotonically increase

– Atomic events
– used to capture performance data state

• Code events
– Routines, classes, templates
– Statement-level blocks, loops

• User-defined events
– Specified by the user

• Abstract mapping events

14

27

inclusive
duration

exclusive
duration

int foo()
{

int a;
a = a + 1;

bar();

a = a + 1;
return a;

}

Inclusive and Exclusive Profiles

• Performance with respect to code regions

• Exclusive measurements for region only

• Inclusive measurements includes child regions

28

Terminology – Example

• For routine “int main()”:

• Exclusive time
– 100-20-50-20=10 secs

• Inclusive time
– 100 secs

• Calls
– 1 call

• Subrs (no. of child routines called)
– 3

• Inclusive time/call
– 100secs

int main()
{ /* takes 100 secs */

f1(); /* takes 20 secs */
f2(); /* takes 50 secs */
f1(); /* takes 20 secs */

/* other work */
}

/*
Time can be replaced by counts
from PAPI e.g., PAPI_FP_INS. */

15

29

Flat and Callpath Profiles

• Static call graph
– Shows all parent-child calling relationships in a program

• Dynamic call graph
– Reflects actual execution time calling relationships

• Flat profile
– Performance metrics for when event is active
– Exclusive and inclusive

• Callpath profile
– Performance metrics for calling path (event chain)
– Differentiate performance with respect to program execution state
– Exclusive and inclusive

30

Performance Evaluation Alternatives

Flat profile

Depthlimit
profile

Parameter
profile

Callpath/
callgraph profile

Phase
profile

Trace

Volume of performance data
Each alternative has:
- one metric/counter
- multiple counters

16

31

Tracing Measurement

void master {

...

send(B, tag, buf);
...

}

Process A:

void slave {

...
recv(A, tag, buf);

...

}

Process B:
void worker {

...
recv(A, tag, buf);

...

}

void master {

...

send(B, tag, buf);
...

}
MONITOR

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

1 master

2 worker

3 ...
trace(ENTER, 1);

trace(SEND, B);

trace(EXIT, 1);

trace(ENTER, 2);

trace(RECV, A);

trace(EXIT, 2);

32

Tracing Analysis and Visualization

1 master

2 worker

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
worker

58 60 62 64 66 68 70

B

A

17

33

Building Bridges to Other Tools

34

Trace Formats

• Different tools produce different formats
– Differ by event types supported
– Differ by ASCII and binary representations

– Vampir Trace Format (VTF)
– KOJAK (EPILOG)
– Jumpshot (SLOG-2)
– Paraver

• Open Trace Format (OTF)
– Supports interoperation between tracing tools

18

35

Profiling / Tracing Comparison

• Profiling
☺ Finite, bounded performance data size
☺ Applicable to both direct and indirect methods
. Loses time dimension (not entirely)
/ Lacks ability to fully describe process interaction

• Tracing
☺ Temporal and spatial dimension to performance data
☺ Capture parallel dynamics and process interaction
. Some inconsistencies with indirect methods
/ Unbounded performance data size (large)
/ Complex event buffering and clock synchronization

36

Vampir – Trace Analysis (TAU-to-VTF3) (S3D)

S3D
� 3D combustion
� Fortran + MPI
� PSC

19

37

Vampir – Trace Zoomed (S3D)

38

Scalasca Bottleneck Detection Tool:
Late Sender = Early Receive Bottleneck

• Bottleneck: waiting time caused by a blocking receive operation posted earlier than the
corresponding send operation. Scalasca has a library of different bottlenecks.

• Scalasca can measure the yellow arrows in the trace. It analyzes and generates a profile containing
the bottlenecks as metrics (shown in yellow). The profiles may be viewed in TAU’s paraprof browser
or Scalasca’s CUBE browser.

time

lo
ca

tio
n

MPI_Recv MPI_Irecv

MPI_Send

MPI_Wait

MPI_Send

time

lo
ca

tio
n

MPI_Recv MPI_Irecv

MPI_Isend

MPI_Wait

MPI_IsendMPI_Wait MPI_Wait

20

39

Scalasca: CUBE Profile Browser

What kind of
performance

problem? Right-click metric
context menu for
info or description

40

CUBE call tree dimension

Where is it in the
source code?

In what context?

Right-click function
context menu to go
to source location

21

41

Alternative: Flat profile

Aggregate values
per function and
its subroutines

42

System tree dimension

How is it distributed
across the system?

22

43

Alternative: Topology display

View/Topology
menu
adjusts topology
view

44

Steps of Performance Evaluation

• Collect basic routine-level timing profile to determine
where most time is being spent

• Collect routine-level hardware counter data to determine
types of performance problems

• Collect callpath profiles to determine sequence of events
causing performance problems

• Conduct finer-grained profiling and/or tracing to pinpoint
performance bottlenecks
– Loop-level profiling with hardware counters
– Tracing of communication operations

23

45

Using TAU: A brief Introduction

• TAU supports several measurement options (profiling, tracing, profiling with
hardware counters, etc.)

• Each measurement configuration of TAU corresponds to a unique stub makefile
that is generated when you configure it

• To instrument source code using PDT
– Choose an appropriate TAU stub makefile in <arch>/lib:
% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-2.18.2/bgp/lib/Makefile.tau-mpi-pdt
% setenv TAU_OPTIONS ‘-optVerbose …’ (see tau_compiler.sh -help)
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C compilers:
% mpif90 foo.f90
changes to
% tau_f90.sh foo.f90

• Execute application and analyze performance data:
% pprof (for text based profile display)
% paraprof (for GUI)

46

TAU Measurement Configuration

% cd /usr/global/tools/tau/training/tau-2.18.2/bgp/lib; ls Makefile.*

Makefile.tau-pdt

Makefile.tau-mpi-pdt

Makefile.tau-opari-openmp-mpi-pdt

Makefile.tau-mpi-scalasca-epilog-pdt

Makefile.tau-mpi-vampirtrace-pdt

Makefile.tau-mpi-papi-pdt

Makefile.tau-papi-mpi-openmp-opari-pdt

Makefile.tau-pthread-pdt…

• For an MPI+F90 application, you may want to start with:
Makefile.tau-mpi-pdt

– Supports MPI instrumentation & PDT for automatic source instrumentation

– % setenv TAU_MAKEFILE
/usr/global/tools/tau/training/tau-2.18.2/bgp/lib/Makefile.tau-
mpi-pdt

– % tau_f90.sh matrix.f90 -o matrix

24

47

Usage Scenarios: Routine Level Profile

• Goal: What routines account for the most time? How much?

• Flat profile with wallclock time:

48

Solution: Generating a flat profile with MPI

% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-2.18.2/bgp
/lib/Makefile.tau-mpi-pdt

% set path=(/usr/global/tools/tau/training/tau-2.18.2/bgp/bin $path)
OR
% source /usr/global/tools/tau/training/src/tau.cshrc [or
tau.bashrc]
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job
% paraprof -–pack app.ppk
Move the app.ppk file to your desktop.

% paraprof app.ppk

25

49

Usage Scenarios: Loop Level Instrumentation

• Goal: What loops account for the most time? How much?

• Flat profile with wallclock time with loop instrumentation:

50

Solution: Generating a loop level profile

% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-2.18.2/bgp
/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS ‘-optTauSelectFile=select.tau –optVerbose’
% cat select.tau

BEGIN_INSTRUMENT_SECTION
loops routine=“#”
END_INSTRUMENT_SECTION

% set path=(/usr/global/tools/tau/training/tau-2.18.2/bgp/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% qsub run.job
% paraprof -–pack app.ppk
Move the app.ppk file to your desktop.

% paraprof app.ppk

26

51

Usage Scenarios: Compiler-based Instrumentation

• Goal: Easily generate routine level performance data using the compiler
instead of PDT for parsing the source code

52

Use Compiler-Based Instrumentation

% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-2.18.2/bgp
/lib/Makefile.tau-mpi

% setenv TAU_OPTIONS ‘-optCompInst –optVerbose’

% % set path=(/usr/global/tools/tau/training/tau-2.18.2/bgp/bin
$path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

27

53

Usage Scenarios: Calculate mflops in Loops

• Goal: What MFlops am I getting in all loops?

• Flat profile with PAPI_FP_INS/OPS and time
(-multiplecounters) with loop instrumentation:

54

Generate a PAPI profile with 2 or more counters

% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-2.18.2/bgp
/lib/Makefile.tau-papi-mpi-pdt

% setenv TAU_OPTIONS ‘-optTauSelectFile=select.tau –optVerbose’

% cat select.tau

BEGIN_INSTRUMENT_SECTION

loops routine=“#”

END_INSTRUMENT_SECTION

% set path=(/usr/global/tools/tau/training/tau-2.18.2/bgp/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv COUNTER1 GET_TIME_OF_DAY

% setenv COUNTER2 PAPI_FP_INS

OR

% setenv TAU_METRICS TIME:PAPI_FP_INS

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

Choose Options -> Show Derived Panel -> Arg 1 = PAPI_FP_INS,
Arg 2 = GET_TIME_OF_DAY, Operation = Divide -> Apply, choose.

28

55

Derived Metrics in ParaProf

56

Usage Scenarios: Generating Callpath Profile

• Goal: Who calls my MPI_Barrier()? Where?

• Callpath profile for a given callpath depth:

29

57

Callpath Profile

• Generates program callgraph

58

Generate a Callpath Profile

% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-2.18.2/bgp
/lib/Makefile.tau-callpath-mpi-pdt

% set path=(/usr/global/tools/tau/training/tau-2.18.2/bgp/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_CALLPATH_DEPTH 100

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

(Windows -> Thread -> Call Graph)

NOTE: In TAU v2.18.1+, you may choose to just set:

% setenv TAU_CALLPATH 1

instead of recompiling your code with the above stub makefile.

Any TAU instrumented executable can generate callpath profiles.

30

59

Usage Scenario: Detect Memory Leaks

60

Detect Memory Leaks

% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-2.18.2/bgp
/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS ‘-optDetectMemoryLeaks -optVerbose’

% set path=(/usr/global/tools/tau/training/tau-2.18.2/bgp/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_CALLPATH_DEPTH 100

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

(Windows -> Thread -> Context Event Window -> Select thread -> select...
expand tree)

(Windows -> Thread -> User Event Bar Chart -> right click LEAK

-> Show User Event Bar Chart)

31

61

Usage Scenarios: Instrument a Python program

• Goal: Generate a flat profile for a Python program

62

Usage Scenarios: Instrument a Python program

Original
code:

Create a wrapper:

32

63

Generate a Python Profile

% setenv TAU_MAKEFILE /usr/global/tools/tau/ibm64
/lib/Makefile.tau-python-pdt

% set path=(/usr/global/tools/tau/ibm64/bin $path)
% cat wrapper.py
import tau
def OurMain():

import foo
tau.run(‘OurMain()’)

Uninstrumented:
% ./foo.py
Instrumented:
% setenv PYTHONPATH <taudir>/ibm64/<lib>/bindings-python-pdt
(same options string as TAU_MAKEFILE)
% setenv LD_LIBRARY_PATH <taudir>/x86_64/lib/bindings-python-pdt\:
$LD_LIBRARY_PATH
% ./wrapper.py

Wrapper invokes foo and generates performance data
% pprof/paraprof

64

Usage Scenarios: Mixed Python+F90+C+pyMPI

• Goal: Generate multi-level instrumentation for Python+MPI+C+F90+C++ ...

33

65

Generate a Multi-Language Profile w/ Python
% setenv TAU_MAKEFILE /usr/global/tools/tau/ibm64

/lib/Makefile.tau-python-mpi-pdt
% set path=(/usr/global/tools/tau/ibm64/bin $path)
% setenv TAU_OPTIONS ‘-optShared -optVerbose…’
(Python needs shared object based TAU library)
% make F90=tau_f90.sh CXX=tau_cxx.sh CC=tau_cc.sh (build libs, pyMPI w/TAU)
% cat wrapper.py
import tau
def OurMain():

import App
tau.run(‘OurMain()’)

Uninstrumented:
% mpirun.lsf /usr/global/tools/.unsupported/pyMPI-2.5b0/bin/pyMPI ./App.py
Instrumented:
% setenv PYTHONPATH <taudir>/x86_64/<lib>/bindings-python-mpi-pdt
(same options string as TAU_MAKEFILE)
% setenv LD_LIBRARY_PATH <taudir>/x86_64/lib/bindings-python-mpi-pdt\:
$LD_LIBRARY_PATH
% mpirun –np 4 /usr/global/tools/.unsupported/pyMPI-2.5b0-TAU/bin/pyMPI
./wrapper.py (Instrumented pyMPI with wrapper.py)

66

Usage Scenarios: Generating a Trace File

• Goal: Identify the temporal aspect of performance. What happens in my code at a given
time? When?

• Event trace visualized in Vampir/Jumpshot

34

67

VNG Process Timeline with PAPI Counters

68

Vampir Counter Timeline Showing I/O BW

35

69

TAU: I/O Instrumentation for Read Bandwidth: Vampir

70

Vampir Process Timeline for Rank O (IOR, LLNL)

36

71

Generate a Trace File

% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-
2.18.2/bgp

/lib/Makefile.tau-mpi-pdt-trace
or setenv TAU_TRACE 1 (in TAU v2.18.2+)
% set path=(/usr/global/tools/tau/training/tau-
2.18.2/bgp/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% qsub run.job
% tau_treemerge.pl
(merges binary traces to create tau.trc and tau.edf files)
JUMPSHOT:
% tau2slog2 tau.trc tau.edf –o app.slog2
% jumpshot app.slog2

OR
VAMPIR:
% tau2otf tau.trc tau.edf app.otf –n 4 –z
(4 streams, compressed output trace)
% vampir app.otf
(or vng client with vngd server).

72

Usage Scenarios: Evaluate Scalability

• Goal: How does my application scale? What bottlenecks occur at what core counts?

• Load profiles in PerfDMF database and examine with PerfExplorer

37

73

Evaluate Scalability using PerfExplorer Charts

% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-2.18.2/bgp
/lib/Makefile.tau-mpi-pdt

% set path=(/usr/global/tools/tau/training/tau-2.18.2/bgp/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run1p.job

% paraprof -–pack 1p.ppk

% qsub run2p.job …

% paraprof -–pack 2p.ppk … and so on.

On your client:

% perfdmf_configure --create-default

(Chooses derby, blank user/passwd, yes to save passwd, defaults)

% perfexplorer_configure

(Yes to load schema, defaults)

% paraprof

(load each trial: DB -> Add Trial -> Type (Paraprof Packed Profile) -> OK) OR use
perfdmf_loadtrial

Then,

% perfexplorer

(Select experiment, Menu: Charts -> Speedup)

74

Communication Matrix Display

• Goal: What is the volume of inter-process communication? Along which calling path?

38

75

Evaluate Scalability using PerfExplorer Charts

% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-2.18.2/bgp
/lib/Makefile.tau-mpi-pdt

% set path=(/usr/global/tools/tau/training/tau-2.18.2/bgp/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_COMM_MATRIX 1

% qsub run.job (setting the environment variables)

% paraprof

(Windows -> Communication Matrix)

76

Labs

• Add one of
source /usr/global/tools/tau/training/src/tau.bashrc
or
source /usr/global/tools/tau/training/src/tau.cshrc
to the end of your .login file (for bash or csh/tcsh users respectively)
These files contain LLNL specific location information.

• wget http://www.paratools.com/llnl09/workshop.tar.gz
or
cp /usr/global/tools/tau/training/src/workshop.tar.gz .
and follow the README file.

39

77

Part II: Introduction to
Performance Engineering

78

Performance Engineering

characterization

Performance
Tuning

Performance
Diagnosis

Performance
Experimentation

Performance
Observation

hypotheses

properties

• Instrumentation
• Measurement
• Analysis
• Visualization

Performance
Technology

• Experiment
management

• Performance
storage

Performance
Technology

• Data mining
• Models
• Expert systems

Performance
Technology

• Optimization process

• Effective use of performance technology

40

79

Performance Optimization Cycle

• Expose factors

• Collect performance data

• Calculate metrics

• Analyze results

• Visualize results

• Identify problems

• Tune performance

Instrumentation

Presentation

Measurement

Optimization

Analysis

80

Parallel Performance Properties

• Parallel code performance is influenced by both
sequential and parallel factors?

• Sequential factors
– Computation and memory use
– Input / output

• Parallel factors
– Thread / process interactions
– Communication and synchronization

41

81

Performance Observation

• Understanding performance requires observation of
performance properties

• Performance tools and methodologies are primarily
distinguished by what observations are made and how
– What aspects of performance factors are seen
– What performance data is obtained

• Tools and methods cover broad range

82

Metrics and Measurement

• Observability depends on measurement

• A metric represents a type of measured data
– Count, time, hardware counters

• A measurement records performance data
– Associates with program execution aspects

• Derived metrics are computed
– Rates (e.g., flops)

• Metrics / measurements decided by need

42

83

Execution Time

• Wall-clock time
– Based on realtime clock

• Virtual process time
– Time when process is executing

– serial time and system time
– Does not include time when process is stalled

• Parallel execution time
– Runs whenever any parallel part is executing
– Global time basis

84

Direct Performance Observation

• Execution actions exposed as events
– In general, actions reflect some execution state

– presence at a code location or change in data
– occurrence in parallelism context (thread of execution)

– Events encode actions for observation

• Observation is direct
– Direct instrumentation of program code (probes)
– Instrumentation invokes performance measurement
– Event measurement = performance data + context

• Performance experiment
– Actual events + performance measurements

43

85

Indirect Performance Observation

• Program code instrumentation is not used

• Performance is observed indirectly
– Execution is interrupted

– can be triggered by different events
– Execution state is queried (sampled)

– different performance data measured
– Event-based sampling (ESB)

• Performance attribution is inferred
– Determined by execution context (state)
– Observation resolution determined by interrupt period
– Performance data associated with context for period

86

Direct Observation: Events

• Event types
– Interval events (begin/end events)

– measures performance between begin and end
– metrics monotonically increase

– Atomic events
– used to capture performance data state

• Code events
– Routines, classes, templates
– Statement-level blocks, loops

• User-defined events
– Specified by the user

• Abstract mapping events

44

87

Direct Observation: Instrumentation

• Events defined by instrumentation access

• Instrumentation levels
– Source code – Library code
– Object code – Executable code
– Runtime system – Operating system

• Different levels provide different information

• Different tools needed for each level

• Levels can have different granularity

88

Direct Observation: Techniques

• Static instrumentation
– Program instrumented prior to execution

• Dynamic instrumentation
– Program instrumented at runtime

• Manual and automatic mechanisms

• Tool required for automatic support
– Source time: preprocessor, translator, compiler
– Link time: wrapper library, preload
– Execution time: binary rewrite, dynamic

• Advantages / disadvantages

45

89

• Associate performance
data with high-level
semantic abstractions

• Abstract events at user-
level provide semantic
context

Direct Observation: Mapping

90

Indirect Observation: Events/Triggers

• Events are actions external to program code
– Timer countdown, HW counter overflow, …
– Consequence of program execution
– Event frequency determined by:

– Type, setup, number enabled (exposed)

• Triggers used to invoke measurement tool
– Traps when events occur (interrupt)
– Associated with events
– May add differentiation to events

46

91

Indirect Observation: Context

• When events trigger, execution context determined at time of trap
(interrupt)

– Access to PC from interrupt frame
– Access to information about process/thread
– Possible access to call stack

– requires call stack unwinder

• Assumption is that the context was the same during the preceding
period
– Between successive triggers
– Statistical approximation valid for long running programs

92

Direct / Indirect Comparison

• Direct performance observation
☺ Measures performance data exactly
☺ Links performance data with application events
. Requires instrumentation of code
/ Measurement overhead can cause execution intrusion and possibly

performance perturbation

• Indirect performance observation
☺ Argued to have less overhead and intrusion
☺ Can observe finer granularity
☺ No code modification required (may need symbols)
/ Inexact measurement and attribution

47

93

Measurement Techniques

• When is measurement triggered?
– External agent (indirect, asynchronous)

– interrupts, hardware counter overflow, …
– Internal agent (direct, synchronous)

– through code modification

• How are measurements made?
– Profiling

– summarizes performance data during execution
– per process / thread and organized with respect to context

– Tracing
– trace record with performance data and timestamp
– per process / thread

94

Measured Performance

• Counts

• Durations

• Communication costs

• Synchronization costs

• Memory use

• Hardware counts

• System calls

48

95

Critical issues

• Accuracy
– Timing and counting accuracy depends on resolution
– Any performance measurement generates overhead

– Execution on performance measurement code
– Measurement overhead can lead to intrusion
– Intrusion can cause perturbation

– alters program behavior

• Granularity
– How many measurements are made
– How much overhead per measurement

• Tradeoff (general wisdom)
– Accuracy is inversely correlated with granularity

96

Performance Problem Solving Goals

• Answer questions at multiple levels of interest
– High-level performance data spanning dimensions

– machine, applications, code revisions, data sets
– examine broad performance trends

– Data from low-level measurements
– use to predict application performance

• Discover general correlations
– performance and features of external environment
– Identify primary performance factors

• Benchmarking analysis for application prediction

• Workload analysis for machine assessment

49

97

Performance Analysis Questions

• How does performance vary with different compilers?

• Is poor performance correlated with certain OS features?

• Has a recent change caused unanticipated performance?

• How does performance vary with MPI variants?

• Why is one application version faster than another?

• What is the reason for the observed scaling behavior?

• Did two runs exhibit similar performance?

• How are performance data related to application events?

• Which machines will run my code the fastest and why?

• Which benchmarks predict my code performance best?

98

Automatic Performance Analysis

Performance
database

Build
application

Execute
application

Simple
analysis
feedback

72%
Faster!

build
information

environment /
performance

data

Offline
analysis

50

99

Performance Data Management

• Performance diagnosis and optimization involves multiple
performance experiments

• Support for common performance data management tasks augments
tool use
– Performance experiment data and metadata storage
– Performance database and query

• What type of performance data should be stored?
– Parallel profiles or parallel traces
– Storage size will dictate
– Experiment metadata helps in meta analysis tasks

• Serves tool integration objectives

100

Metadata Collection

• Integration of metadata with each parallel profile
– Separate information from performance data

• Three ways to incorporate metadata
– Measured hardware/system information

– CPU speed, memory in GB, MPI node IDs, …
– Application instrumentation (application-specific)

– Application parameters, input data, domain decomposition
– Capture arbitrary name/value pair and save with experiment

– Data management tools can read additional metadata
– Compiler flags, submission scripts, input files, …
– Before or after execution

• Enhances analysis capabilities

51

101

Performance Data Mining

• Conduct parallel performance analysis in a systematic, collaborative
and reusable manner
– Manage performance complexity and automate process
– Discover performance relationship and properties
– Multi-experiment performance analysis

• Data mining applied to parallel performance data
– Comparative, clustering, correlation, characterization, …
– Large-scale performance data reduction

• Implement extensible analysis framework
– Abtraction / automation of data mining operations
– Interface to existing analysis and data mining tools

102

How to explain performance?

• Should not just redescribed performance results

• Should explain performance phenomena
– What are the causes for performance observed?
– What are the factors and how do they interrelate?
– Performance analytics, forensics, and decision support

• Add knowledge to do more intelligent things
– Automated analysis needs good informed feedback
– Performance model generation requires interpretation

• Performance knowledge discovery framework
– Integrating meta-information
– Knowledge-based performance problem solving

52

103

Metadata and Knowledge Role

Performance KnowledgePerformance Knowledge

SourceSource
CodeCode

Build Build
EnvironmenEnvironmen

tt

Run Run
EnvironmenEnvironmen

tt

Performance Result

Execution

You have to
capture these...

...to understand
this

ApplicationApplication MachineMachine

PerformancPerformanc
e Problemse Problems

Context KnowledgeContext Knowledge

104

Performance Optimization Process

• Performance characterization
– Identify major performance contributors
– Identify sources of performance inefficiency
– Utilize timing and hardware measures

• Performance diagnosis (Performance Debugging)
– Look for conditions of performance problems
– Determine if conditions are met and their severity
– What and where are the performance bottlenecks

• Performance tuning
– Focus on dominant performance contributors
– Eliminate main performance bottlenecks

53

105

Part III:
PAPI

University of Tennessee, Knoxville

106

What’s PAPI?

• Middleware to provide a consistent programming interface for the performance
counter hardware found in most major micro-processors.

• Countable events are defined in two ways:
– platform-neutral preset events
– Platform-dependent native events

• Presets can be derived from multiple native events

• All events are referenced by name and collected in EventSets for sampling

• Events can be multiplexed if counters are limited

• Statistical sampling implemented by:
– Hardware overflow if supported by the platform
– Software overflow with timer driven sampling

54

107

3rd Party and GUI Tools

PAPI HARDWARE SPECIFIC
LAYER

PAPI PORTABLE LAYER

Kernel Extension

Operating System

Perf Counter Hardware

Low Level
User API

High Level
User API

PAPI Counter Interfaces

PAPI provides 3 interfaces to the
underlying counter hardware:

1.A Low Level API manages
hardware events in user defined
groups called EventSets, and
provides access to advanced
features.

2.A High Level API provides the
ability to start, stop and read
the counters for a specified list
of events.

3.Graphical and end-user tools
provide facile data collection
and visualization.

108

Level 1 Cache
PAPI_L1_DCH: Level 1 data cache hits
PAPI_L1_DCA: Level 1 data cache accesses
PAPI_L1_DCR: Level 1 data cache reads
PAPI_L1_DCW: Level 1 data cache writes
PAPI_L1_DCM: Level 1 data cache misses

PAPI_L1_ICH: Level 1 instruction cache hits
PAPI_L1_ICA: Level 1 instruction cache accesses
PAPI_L1_ICR: Level 1 instruction cache reads
PAPI_L1_ICW: Level 1 instruction cache writes
PAPI_L1_ICM: Level 1 instruction cache misses

PAPI_L1_TCH: Level 1 total cache hits
PAPI_L1_TCA: Level 1 total cache accesses
PAPI_L1_TCR: Level 1 total cache reads
PAPI_L1_TCW: Level 1 total cache writes
PAPI_L1_TCM: Level 1 cache misses

PAPI_L1_LDM: Level 1 load misses
PAPI_L1_STM: Level 1 store misses

PAPI Preset Events

♦Preset Events
¾Standard set of over 100

events for application
performance tuning

¾No standardization of the
exact definition

¾Mapped to either single or
linear combinations of native
events on each platform

¾Use papi_avail utility to see
what preset events are
available on a given platform

55

109

PAPI Native Events

• Native Events
– Any event countable by the CPU
– Same interface as for preset events
– Use papi_native_avail utility to see all

available native events

• Use papi_event_chooser utility to select a
compatible set of events

PRESET,
PAPI_L2_DCA,
DERIVED_ADD,
L2_LD:SELF:ANY:MESI,
L2_ST:SELF:MESI

110

PAPI & Multicore

• Multicore is the (near term) future of Petascale
computing

• Minimizing resource contention will be key
– Memory bandwidth
– Cache sharing
– Bus and other resource contention

56

111

Multicore counter support

• AMD Barcelona
– 4 L3 shared cache events:

– READ_REQUEST_TO_L3_CACHE
– L3_CACHE_MISSES
– L3_FILLS_CAUSED_BY_L2_EVICTIONS
– L3_EVICTIONS

– First 3 are qualified per core

• Intel Core2 series:
– SELF/ANY
– L2 shared cache, bus, snoop
– 39 events/~140 are core qualified

• Itanium Montecito:
– SELF/ANY
– 50 bus events (~1/6) are core qualified

112

Extending PAPI beyond the CPU

• PAPI has historically targeted on on-processor performance counters
• Several categories of off-processor counters exist

– network interfaces: Myrinet, Infiniband, GigE
– memory interfaces: Cray X1, SeaStar
– thermal and power interfaces: ACPI, lm-sensors
– accelerators?

• CHALLENGE:
– Extend the PAPI interface to address multiple counter domains
– Preserve the PAPI calling semantics, ease of use, and platform

independence for existing applications

57

113

Motivation

• Performance counters also exist in off-cpu resources
• All information is valuable for performance optimization
• Increasing cpu counts & power demands place greater importance on:

– Thermal health and management
– Power consumption

• Multicore systems require careful resource balancing
• Higher processor & core counts make communications metrics more

critical:
– Bandwidth
– Latency
– Dropped packets
– Bytes transferred

114

Limitations

• Interfaces are often obscure, unexposed or non-standard

• Performance data (accelerators) can be vastly different than
cpus

• Measurements are usually system-wide and asynchronous
– May not matter on dedicated single-task OS’s like Cray Catamount

and Blue Gene CNK
– But matters more for Multicore

• Often very different time scales

58

115

Component PAPI Goals

• Support simultaneous access to on- and off-processor counters

• Isolate hardware dependent code in separable ‘component’
modules

• Extend platform independent code to support multiple
simultaneous components

• Add or modify API calls to support access to any of several
components

• Modify build environment for easy selection and configuration of
multiple available components

116

PAPI HARDWARE SPECIFIC
LAYER

PAPI PORTABLE LAYER

Kernel Extension

Operating System

Perf Counter Hardware

Low Level
User API

High Level
User API

Monolithic ‘PAPI Classic’

59

117

PAPI FRAMEWORK

Low Level
User API

High Level
User API

PAPI COMPONENT
(CPU)

Operating System

Counter Hardware

Component PAPI

Developer APIDeveloper API

PAPI COMPONENT
(NETWORK)

Operating System

Counter Hardware

PAPI COMPONENT
(THERMAL)

Operating System

Counter Hardware

Developer API

118

For more information

• PAPI Website: http://icl.cs.utk.edu/papi/
– Software
– Release notes
– Documentation
– Links to tools that use PAPI
– Mailing/discussion lists

60

119

TAU Performance System®

Part IV: TAU Internals

120

Performance Tools FAQ/Concerns

• Does it automatically instrument my code? At the routine level? At the outer-loop level?

• Can it show me where time is spent in my code? PAPI Flops? L1 data cache misses? Can I measure more
than one quantity in a trial?

• Does the tool support profiling (runtime summarization) as well as tracing (time-line based displays)? What
about profile snapshots? Callpath (parent-child) profiles? Can I use it to easily benchmark codes?

• Can I observe the performance data at runtime as the application executes?

• Can it show me memory utilization? Memory leaks? Mallocs/frees? When and where?

• What about I/O? Can I observe bandwidth of reads/writes? Volume of I/O? What about Kernel events?
User space+Kernel?

• What is the typical overhead? Can I reduce it to < 5%? < 1%? Can it compensate and remove timer
overhead from performance data? Can it throttle away instrumentation in lightweight routines at runtime to
reduce overhead?

• I already have profile data from <XYZ> tool. Can it import my legacy data?

• I prefer <XYZ> performance tool for visualization. Can it hook up with this tool? Are there converters?

61

121

Performance Tools FAQ/Concerns (contd.)

• Can I use it for multi-core CPUs? Compare the performance of application running on a single vs. multi-
core processor? Can I observe multi-core data snoops, invalidates?

• Can I share the performance data with my colleagues in a secure manner (web/database)? Can it
automatically track progress of my application over time
(~ 6 mos)? Can I use it for scalability studies? Over multiple platforms?

• Are the GUI client tools available under Linux? MS Windows? Apple?
• Does it run on all Cray, IBM, SGI, HP … platforms? CNL? Catamount?
• Does it support MPI? MPI2? Threads? Hybrid MPI+Pthreads/MPI+OpenMP?
• Does it support Fortran? C++, C? Java? Python? Python+MPI+F90+C++…?
• Does it support Intel/PGI/PathScale/IBM/Cray/Sun compilers?
• Are tools available in command-line form & GUI? IDE GUI? Web-based? 3D?
• Is it already installed and supported on my HPC system? What about systems at NERSC? ANL? LLNL?

LANL? NASA? DoD? NSF sites?...
• Is there support (phone/e-mail) available for the tool? Professional support? For instrumentation?

Analysis?
• Will it work on the new <XYZ> HPC platform scheduled for release six months from now?
• Is it free? BSD license? …

122

TAU Performance System® Project

• Tuning and Analysis Utilities (15+ year project effort)

• Performance system framework for HPC systems
– Integrated, scalable, and flexible
– Target parallel programming paradigms

• Integrated toolkit for performance problem solving
– Instrumentation, measurement, analysis, and visualization
– Portable performance profiling and tracing facility
– Performance data management and data mining

• Partners
– LLNL, ANL, LANL
– Research Centre Jülich, TU Dresden

62

123

TAU Parallel Performance System Goals

• Portable (open source) parallel performance system
– Computer system architectures and operating systems
– Different programming languages and compilers

• Multi-level, multi-language performance instrumentation

• Flexible and configurable performance measurement

• Support for multiple parallel programming paradigms
– Multi-threading, message passing, mixed-mode, hybrid, object oriented (generic),

component-based

• Support for performance mapping

• Integration of leading performance technology

• Scalable (very large) parallel performance analysis

124

TAU Performance System Components

TAU Architecture Program Analysis

Parallel Profile Analysis

PD
T

Pe
rf

D
M

F
Pa

ra
Pr

of

Performance Data Mining

Performance Monitoring

TA
U

ov
er

Su
pe

rm
on

PerfExplorer

63

125

TAU Performance System Architecture

event
selection

126

TAU Performance System Architecture

64

127

Program Database Toolkit (PDT)

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE

PDBhtml

SILOON

CHASM

TAU_instr

Program
documentation

Application
component glue

C++ / F90/95
interoperability

Automatic source
instrumentation

128

Automatic Source-Level Instrumentation in TAU

tau_instrumentor

Parsed
program

Instrumentation
specification file

Instrumented
source

TAU source
analyzer

Application
source

65

129

Building Bridges to Other Tools

130

Installing TAU on 64bit AIX

• Install PAPI and PDT
– PAPI:

– ./configure –prefix=$HOME/pkgs/papi-3.5.0;
– Make ; make install

– PDT:
– ./configure –prefix=$HOME/pkgs/pdt-3.13 –PGI
– make; make install

• Install TAU:
– ./installtau –pdt=$HOME/pkgs/pdt-3.13 –papi=$HOME/pkgs/papi-3.5.0

-c++=pgCC -cc=pgcc -fortran=pgi –mpiinc=<dir> -mpilib=<dir>
– Configures multiple typically requested versions for you in ia64/lib/Makefile.tau-*

configurations
– tau_validate –html –build x86_64 >& results.html
– mozilla results.html

66

131

Validating an Install

132

TAU_SETUP: A GUI for Installing TAU

67

133

Upgrading TAU v2.18 configurations to 2.18.2

• Upgrade TAU
– Previous installation in $HOME/pkgs/tau-2.18

– cd tau-2.18.2
– ./upgradetau /usr/global/tools/pkgs/tau-2.18

– Builds all previous configurations in the current dir
– You may also upgrade with a new package say PDT 3.14.1

– ./upgradetau /usr/global/tools/pkgs/tau-2.18 –
pdt=/usr/global/tools/pkgs/pdtoolkit-3.14.1

• Validate your new installation

– ./tau_validate –html –build x86_64 >& results.html
– mozilla `pwd`/results.html

134

Using TAU

• Install TAU
% ./configure [options]; make clean install

• Replace the names of your compiler with tau_f90.sh, tau_cxx.sh and tau_cc.sh in
your makefiles

• Set environment variables
– Choose the measurement option and compile your code:

– setenv TAU_MAKEFILE $TAU/Makefile.tau-mpi-pdt
– setenv TAU_OPTIONS ‘-optVerbose -optKeepFiles -optPreProcess’

– At runtime, if more than one metric is measured (-multiplecounters):
– setenv COUNTER1 GET_TIME_OF_DAY
– setenv COUNTER2 PAPI_FP_INS
– setenv COUNTER3 PAPI_NATIVE_<native_name>

– Use papi_native_avail, papi_avail, and papi_event_chooser to select these preset and native event names

• Build the application, run it, analyze performance data

68

135

Using TAU: A brief Introduction

• To instrument source code:
% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-

2.18.2/bgp/lib/Makefile.tau-mpi-pdt
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C

compilers:
% mpif90 foo.f90
changes to
% tau_f90.sh foo.f90

• Execute application and then run:
% pprof (for text based profile display)
% paraprof (for GUI)

• LABS:
% source /usr/global/tools/tau/training/src/tau.cshrc
% cp /usr/global/tools/tau/training/src/workshop.tar.gz .
and follow instructions in README file

136

TAU Instrumentation Approach

• Support for standard program events
– Routines
– Classes and templates
– Statement-level blocks

• Support for user-defined events
– Begin/End events (“user-defined timers”)
– Atomic events (e.g., size of memory allocated/freed)
– Selection of event statistics

• Support definition of “semantic” entities for mapping

• Support for event groups

• Instrumentation optimization (eliminate instrumentation in
lightweight routines)

69

137

TAU Instrumentation

• Flexible instrumentation mechanisms at multiple levels
– Source code

– manual (TAU API, TAU Component API)
– automatic

– C, C++, F77/90/95 (Program Database Toolkit (PDT))
– OpenMP (directive rewriting (Opari), POMP spec)

– Object code
– pre-instrumented libraries (e.g., MPI using PMPI)
– statically-linked and dynamically-linked

– Executable code
– dynamic instrumentation (pre-execution) (DynInstAPI)
– virtual machine instrumentation (e.g., Java using JVMPI)
– Python interpreter based instrumentation at runtime

– Proxy Components

138

TAU Measurement Approach

• Portable and scalable parallel profiling solution
– Multiple profiling types and options
– Event selection and control (enabling/disabling, throttling)
– Online profile access and sampling
– Online performance profile overhead compensation

• Portable and scalable parallel tracing solution
– Trace translation to Open Trace Format (OTF)
– Trace streams and hierarchical trace merging

• Robust timing and hardware performance support

• Multiple counters (hardware, user-defined, system)

• Performance measurement for CCA component software

70

139

Using TAU

• Configuration

• Instrumentation
– Manual
– MPI – Wrapper interposition library
– PDT- Source rewriting for C,C++, F77/90/95
– Compiler-based instrumentation for C, C++, F90
– OpenMP – Directive rewriting
– Component based instrumentation – Proxy components
– Binary Instrumentation

– DyninstAPI – Runtime Instrumentation/Rewriting binary
– Java – Runtime instrumentation
– Python – Runtime instrumentation

• Measurement

• Performance Analysis

140

TAU Measurement System Configuration

• configure [OPTIONS]
{-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
-pdt=<dir> Specify location of PDT
-opari=<dir> Specify location of Opari OpenMP tool
-papi=<dir> Specify location of PAPI
-vampirtrace=<dir> Specify location of VampirTrace
-mpi[inc/lib]=<dir> Specify MPI library instrumentation
-dyninst=<dir> Specify location of DynInst Package
-shmem[inc/lib]=<dir> Specify PSHMEM library instrumentation
-python[inc/lib]=<dir> Specify Python instrumentation
-tag=<name> Specify a unique configuration name
-epilog=<dir> Specify location of EPILOG
-slog2 Build SLOG2/Jumpshot tracing package
-otf=<dir> Specify location of OTF trace package
-arch=<architecture> Specify architecture explicitly

(bgl, xt3,ibm64,ibm64linux…)
{-pthread, -sproc} Use pthread or SGI sproc threads
-openmp Use OpenMP threads
-jdk=<dir> Specify Java instrumentation (JDK)
-fortran=[vendor] Specify Fortran compiler

71

141

TAU Measurement System Configuration

• configure [OPTIONS]
-TRACE Generate binary TAU traces
-PROFILE (default) Generate profiles (summary)
-PROFILECALLPATH Generate call path profiles
-PROFILEPHASE Generate phase based profiles
-PROFILEMEMORY Track heap memory for each routine
-PROFILEHEADROOM Track memory headroom to grow
-MULTIPLECOUNTERS Use hardware counters + time
-COMPENSATE Compensate timer overhead
-CPUTIME Use usertime+system time
-PAPIWALLCLOCK Use PAPI’s wallclock time
-PAPIVIRTUAL Use PAPI’s process virtual time
-SGITIMERS Use fast IRIX timers
-LINUXTIMERS Use fast x86 Linux timers

142

TAU Measurement Configuration – Examples

• ./configure -arch=x86_64 –pdt=/usr/global/tools/pkgs/pdtoolkit-3.14 -
mpi Configure using PDT and MPI

• ./configure -arch=x86_64 -papi=/usr/global/tools/pkgs/papi-3.6.2
-pdt=<dir> -mpi -MULTIPLECOUNTERS; make clean install
– Use PAPI counters (one or more) with C/C++/F90 automatic

instrumentation. Also instrument the MPI library.

• Typically configure multiple measurement libraries

• Each configuration creates a unique <arch>/lib/Makefile.tau<options>
stub makefile. It corresponds to the configuration options used. e.g.,
– $(PET_HOME)/tau/x86_64/lib/Makefile.tau-mpi-pdt
– $(PET_HOME)/tau/x86_64/lib/Makefile.tau-multiplecounters-mpi-papi-pdt

72

143

TAU Measurement Configuration – Examples

% cd $(PET_HOME)/tau/x86_64/lib; ls Makefile.*pgi
Makefile.tau-pdt
Makefile.tau-mpi-pdt
Makefile.tau-callpath-mpi-pdt
Makefile.tau-mpi-pdt-trace
Makefile.tau-mpi-compensate-pdt
Makefile.tau-multiplecounters-mpi-papi-pdt
Makefile.tau-multiplecounters-mpi-papi-pdt-trace
Makefile.tau-mpi-papi-pdt-epilog-scalasca-trace
Makefile.tau-pdt…

• For an MPI+F90 application, you may want to start with:
Makefile.tau-mpi-pdt

– Supports MPI instrumentation & PDT for automatic source instrumentation for PGI compilers

144

Configuration Parameters in Stub Makefiles

• Each TAU stub Makefile resides in <tau>/<arch>/lib directory
• Variables:

– TAU_CXX Specify the C++ compiler used by TAU
– TAU_CC, TAU_F90 Specify the C, F90 compilers
– TAU_DEFS Defines used by TAU. Add to CFLAGS
– TAU_LDFLAGS Linker options. Add to LDFLAGS
– TAU_INCLUDE Header files include path. Add to CFLAGS
– TAU_LIBS Statically linked TAU library. Add to LIBS
– TAU_SHLIBS Dynamically linked TAU library
– TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
– TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
– TAU_FORTRANLIBS Must be linked in with C++ linker for F90
– TAU_CXXLIBS Must be linked in with F90 linker
– TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
– TAU_DISABLE TAU’s dummy F90 stub library
– TAU_COMPILER Instrument using tau_compiler.sh script

• Each stub makefile encapsulates the parameters that TAU was configured with
• It represents a specific instance of the TAU libraries. TAU scripts use stub

makefiles to identify what performance measurements are to be performed.

73

145

Using TAU

• Install TAU
% configure [options]; make clean install

• Typically modify application makefile and choose TAU configuration
– Select TAU’s stub makefile, change name of compiler in Makefile
% setenv TAU_MAKEFILE /usr/global/tools/tau/training/tau-

2.18.2/bgp/lib/Makefile.tau-mpi-pdt
% setenv TAU_OPTIONS ‘-optVerbose -optKeepFiles ...’
– F90 = tau_f90.sh CXX = tau_cxx.sh CC = tau_cc.sh

• Set environment variables
– Directory where profiles/traces are to be stored/counter selection

• Execute application
% qsub run.cray.job

• Analyze performance data
– paraprof, vampir, pprof, paraver …

146

ParaProf Main Window

click left
mouse button

click right
mouse button

% paraprof matmult.ppk

74

147

TAU’s MPI Wrapper Interposition Library

• Uses standard MPI Profiling Interface
– Provides name shifted interface

– MPI_Send = PMPI_Send
– Weak bindings

• Interpose TAU’s MPI wrapper library between MPI and TAU
– -lmpi replaced by –lTauMpi –lpmpi –lmpi

• No change to the source code!
– Just re-link the application to generate performance data
– setenv TAU_MAKEFILE <dir>/<arch>/lib/Makefile.tau-mpi -[options]
– Use tau_cxx.sh, tau_f90.sh and tau_cc.sh as compilers

148

Runtime MPI Shared Library Instrumentation

• We can now interpose the MPI wrapper library for applications that
have already been compiled
– No re-compilation or re-linking necessary!

• Uses LD_PRELOAD for Linux

• On AIX, TAU uses MPI_EUILIB / MPI_EUILIBPATH

• Simply compile TAU with MPI support and prefix your MPI program
with tauex
% mpirun -np 4 tauex a.out

• Requires shared library MPI - does not work on XT3

• Approach will work with other shared libraries

75

149

-PROFILE Configuration Option

• Generates flat profiles (one for each MPI process)
– It is the default option.

• Uses wallclock time (gettimeofday() sys call)

• Calculates exclusive, inclusive time spent in each timer and number of calls

% pprof

150

-MULTIPLECOUNTERS Configuration Option

• Instead of one metric, profile or trace with more than one metric
– Set environment variables COUNTER[1-25] to specify the metric

– % setenv COUNTER1 GET_TIME_OF_DAY
– % setenv COUNTER2 PAPI_L2_DCM
– % setenv COUNTER3 PAPI_FP_OPS
– % setenv COUNTER4 PAPI_NATIVE_<native_event>
– % setenv COUNTER5 P_WALL_CLOCK_TIME …
OR
– % setenv TAU_METRICS GET_TIME_OF_DAY:PAPI_L2_DCM:PAPI_FP_OPS...

• When used with –TRACE option, the first counter must be
GET_TIME_OF_DAY

– % setenv COUNTER1 GET_TIME_OF_DAY
– Provides a globally synchronized real time clock for tracing

• -multiplecounters appears in the name of the stub Makefile

• Often used with –papi=<dir> to measure hardware performance counters
and time

• papi_native_avail and papi_avail are two useful tools

76

151

Papi_avail

• List of PAPI preset counters:cfe1.sameer 66> ./papi_avail | more
Available events and hardware information.

Vendor string and code : GenuineIntel (1)
Model string and code : Itanium 2 (1)
CPU Revision : 5.000000
CPU Megahertz : 1500.000000
CPU's in this Node : 28
Nodes in this System : 1
Total CPU's : 28
Number Hardware Counters : 4
Max Multiplex Counters : 32

The following correspond to fields in the PAPI_event_info_t structure.

Name Code Avail Deriv Description (Note)
PAPI_L1_DCM 0x80000000 Yes No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes Yes Level 2 data cache misses
PAPI_L2_ICM 0x80000003 Yes No Level 2 instruction cache misses
PAPI_L3_DCM 0x80000004 Yes Yes Level 3 data cache misses
PAPI_L3_ICM 0x80000005 Yes No Level 3 instruction cache misses
PAPI_L1_TCM 0x80000006 Yes Yes Level 1 cache misses
PAPI_L2_TCM 0x80000007 Yes No Level 2 cache misses

…

152

Papi_native_avail

• List of PAPI native counters:cfe1.sameer 67> ./papi_native_avail | more

Available native events and hardware information.

Vendor string and code : GenuineIntel (1)

Model string and code : Itanium 2 (1)

CPU Revision : 5.000000

CPU Megahertz : 1500.000000

CPU's in this Node : 28

Nodes in this System : 1

Total CPU's : 28

Number Hardware Counters : 4

Max Multiplex Counters : 32

The following correspond to fields in the PAPI_event_info_t structure.

Symbol Event Code Long Description

Register Name[n]

Register Value[n]

ALAT_CAPACITY_MISS_ALL 0x40000000 ALAT Entry Replaced -- both integer and floating point i

nstructions

ALAT_CAPACITY_MISS_FP 0x40000001 ALAT Entry Replaced -- only floating point instructions

ALAT_CAPACITY_MISS_INT 0x40000002 ALAT Entry Replaced -- only integer instructions

…

77

153

Papi_event_chooser on IA-64

• List of PAPI PRESET counters that may be counted together:cfe1.sameer 68> ./papi_event_chooser

Usage: eventChooser NATIVE|PRESET evt1 evet2 ...

cfe1.sameer 72> ./papi_event_chooser PRESET PAPI_FP_OPS PAPI_L1_DCM PAPI_TOT_CYC

Test case eventChooser: Available events which can be added with given events.

Vendor string and code : GenuineIntel (1)

Model string and code : Itanium 2 (1)

CPU Revision : 5.000000

CPU Megahertz : 1500.000000

CPU's in this Node : 28

Nodes in this System : 1

Total CPU's : 28

Number Hardware Counters : 4

Max Multiplex Counters : 32

Name Derived Description (Mgr. Note)

PAPI_L1_ICM No Level 1 instruction cache misses ()

PAPI_L2_ICM No Level 2 instruction cache misses ()

PAPI_L3_ICM No Level 3 instruction cache misses

…

PAPI_L1_ICM may be counted
with these counters on IA64

154

-PROFILECALLPATH Configuration Option

• Generates profiles that show the calling order (edges & nodes in callgraph)
– A=>B=>C shows the time spent in C when it was called by B and B was called by A
– Control the depth of callpath using TAU_CALLPATH_DEPTH env. Variable
– -callpath in the name of the stub Makefile name
– In TAU 2.18.2+, any executable can generate callpath profiles using
– % setenv TAU_CALLPATH 1

78

155

-PROFILECALLPATH Configuration Option

• Generates program callgraph

156

Profile Measurement – Three Flavors

• Flat profiles
– Time (or counts) spent in each routine (nodes in callgraph).
– Exclusive/inclusive time, no. of calls, child calls
– E.g,: MPI_Send, foo, …

• Callpath Profiles
– Flat profiles, plus
– Sequence of actions that led to poor performance
– Time spent along a calling path (edges in callgraph)
– E.g., “main=> f1 => f2 => MPI_Send” shows the time spent in MPI_Send when

called by f2, when f2 is called by f1, when it is called by main. Depth of this
callpath = 4 (TAU_CALLPATH_DEPTH environment variable)

• Phase based profiles
– Flat profiles, plus
– Flat profiles under a phase (nested phases are allowed)
– Default “main” phase has all phases and routines invoked outside phases
– Supports static or dynamic (per-iteration) phases
– E.g., “IO => MPI_Send” is time spent in MPI_Send in IO phase

79

157

-DEPTHLIMIT Configuration Option

• Allows users to enable instrumentation at runtime based on the depth of
a calling routine on a callstack.
– Disables instrumentation in all routines a certain depth away from the root in

a callgraph

• TAU_DEPTH_LIMIT environment variable specifies depth
% setenv TAU_DEPTH_LIMIT 1
enables instrumentation in only “main”
% setenv TAU_DEPTH_LIMIT 2
enables instrumentation in main and routines that are directly called by main

• Stub makefile has -depthlimit in its name:
setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-mpi-depthlimit-pdt

158

-COMPENSATE Configuration Option

• Specifies online compensation of performance perturbation

• TAU computes its timer overhead and subtracts it from the
profiles

• Works well with time or instructions based metrics

• Does not work with level 1/2 data cache misses

• setenv TAU_COMPENSATE 1 (in TAU v2.18.2+)

80

159

-TRACE Configuration Option

• Generates event-trace logs, rather than summary profiles

• Traces show when and where an event occurred in terms of location and the process that
executed it

• Traces from multiple processes are merged:
% tau_treemerge.pl

– generates tau.trc and tau.edf as merged trace and event definition file

• TAU traces can be converted to Vampir’s OTF/VTF3, Jumpshot SLOG2, Paraver trace
formats:

% tau2otf tau.trc tau.edf app.otf
% tau2vtf tau.trc tau.edf app.vpt.gz
% tau2slog2 tau.trc tau.edf -o app.slog2
% tau_convert -paraver tau.trc tau.edf app.prv

• Stub Makefile has -trace in its name
% setenv TAU_MAKEFILE <taudir>/<arch>/lib/

Makefile.tau-mpi-pdt-trace-pdt
In TAU 2.18.2+ you may simply use with any configuration, at runtime:
% setenv TAU_TRACE 1

160

Performance Evaluation Alternatives

Flat profile

Depthlimit
profile

Parameter
profile

Callpath/
callgraph profile

Phase
profile

Trace

Volume of performance data
Each alternative has:
- one metric/counter
- multiple counters

81

161

-PROFILEPARAM Configuration Option

• Idea: partition performance data for individual functions
based on runtime parameters

• Enable by configuring with –PROFILEPARAM

• TAU call: TAU_PROFILE_PARAM1L (value, “name”)

• Simple example:

void foo(long input) {

TAU_PROFILE("foo", "", TAU_DEFAULT);

TAU_PROFILE_PARAM1L(input, "input");

... }

162

Workload Characterization

• 5 seconds spent in function “foo” becomes
– 2 seconds for “foo [<input> = <25>]”
– 1 seconds for “foo [<input> = <5>]”
– …

• Currently used in MPI wrapper library
– Allows for partitioning of time spent in MPI routines based on

parameters (message size, message tag, destination node)
– Can be extrapolated to infer specifics about the MPI subsystem

and system as a whole

82

163

Workload Characterization

• Simple example, send/receive squared message sizes (0-32MB) #include <stdio.h>
#include <mpi.h>
int buffer[8*1024*1024];

int main(int argc, char **argv) {
int rank, size, i, j;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
for (i=0;i<1000;i++)

for (j=1;j<=8*1024*1024;j*=2) {
if (rank == 0) {
MPI_Send(buffer,j,MPI_INT,1,42,MPI_COMM_WORLD);

} else {
MPI_Status status;
MPI_Recv(buffer,j,MPI_INT,0,42,MPI_COMM_WORLD,&status);

}
}

MPI_Finalize();
}

164

Workload Characterization

• Use tau_load.sh to instrument MPI routines (SGI Altix)% icc mpi.c –lmpi

% mpirun –np 2 tauex a.out

SGI MPI (SGI Altix) Intel MPI (SGI Altix)

83

165

Workload Characterization

• MPI Results (NAS Parallel Benchmark 3.1, LU class D on
16 processors of SGI Altix)

166

Workload Characterization

• Two different message sizes (~3.3MB and ~4K)

84

167

Job Tracking: ParaProf profile browser

LU spent 0.162 seconds sending
messages of size 44880

It got 833.82 Mflops!

168

Memory Profiling in TAU

• Configuration option –PROFILEMEMORY
– Records global heap memory utilization for each function
– Takes one sample at beginning of each function and associates the sample

with function name

• Configuration option -PROFILEHEADROOM
– Records headroom (amount of free memory to grow) for each function
– Takes one sample at beginning of each function and associates it with the

callstack [TAU_CALLPATH_DEPTH env variable]
– Useful for debugging memory usage on IBM BG/L.

• Independent of instrumentation/measurement options selected

• No need to insert macros/calls in the source code

• User defined atomic events appear in profiles/traces

85

169

Memory Profiling in TAU (Atomic events)

Flash2 code profile (-PROFILEMEMORY) on IBM BlueGene/L [MPI rank 0]

170

Memory Profiling in TAU

• Instrumentation based observation of global heap memory (not per function)
– call TAU_TRACK_MEMORY()
– call TAU_TRACK_MEMORY_HEADROOM()

– Triggers one sample every 10 secs
– call TAU_TRACK_MEMORY_HERE()
– call TAU_TRACK_MEMORY_HEADROOM_HERE()

– Triggers sample at a specific location in source code
– call TAU_SET_INTERRUPT_INTERVAL(seconds)

– To set inter-interrupt interval for sampling
– call TAU_DISABLE_TRACKING_MEMORY()
– call TAU_DISABLE_TRACKING_MEMORY_HEADROOM()

– To turn off recording memory utilization
– call TAU_ENABLE_TRACKING_MEMORY()
– call TAU_ENABLE_TRACKING_MEMORY_HEADROOM()

– To re-enable tracking memory utilization

86

171

Detecting Memory Leaks in C/C++

• TAU wrapper library for malloc/realloc/free

• During instrumentation, specify
-optDetectMemoryLeaks option to TAU_COMPILER

% setenv TAU_OPTIONS ‘-optVerbose -optDetectMemoryLeaks’
% setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-mpi-pdt...
% tau_cxx.sh foo.cpp ...

• Tracks each memory allocation/de-allocation in parsed files

• Correlates each memory event with the executing callstack

• At the end of execution, TAU detects memory leaks

• TAU reports leaks based on allocations and the executing callstack

• Set TAU_CALLPATH_DEPTH environment variable to limit callpath data
– default is 2

• Future work
– Support for C++ new/delete planned
– Support for Fortran 90/95 allocate/deallocate planned

172

Memory Leak Detection

87

173

Detecting Memory Leaks in Fortran

subroutine foo(x)

integer:: x

integer, allocatable :: A(:), B(:), C(:)

print *, "inside foo"

allocate(A(x), B(x), C(x))

deallocate(A, C)

print *, "exiting foo"

end subroutine foo

program main

call foo(5)

end program main

174

Detecting Memory Leaks in Fortran

USER EVENTS Profile :NODE 0, CONTEXT 0, THREAD 0

NumSamples MaxValue MinValue MeanValue Std. Dev. Event Name

1 5 5 5 0 MEMORY LEAK! malloc size <file=simple.f, variable=B, line=6> : MAIN => FOO

1 5 5 5 0 free size <file=simple.f, variable=A, line=7>

1 5 5 5 0 free size <file=simple.f, variable=A, line=7> : MAIN => FOO

1 5 5 5 0 free size <file=simple.f, variable=C, line=7>

1 5 5 5 0 free size <file=simple.f, variable=C, line=7> : MAIN => FOO

1 5 5 5 0 malloc size <file=simple.f, variable=A, line=6>

1 5 5 5 0 malloc size <file=simple.f, variable=A, line=6> : MAIN => FOO

1 5 5 5 0 malloc size <file=simple.f, variable=B, line=6>

1 5 5 5 0 malloc size <file=simple.f, variable=B, line=6> : MAIN => FOO

1 5 5 5 0 malloc size <file=simple.f, variable=C, line=6>

1 5 5 5 0 malloc size <file=simple.f, variable=C, line=6> : MAIN => FOO

88

175

Phase Profiling (NAS BT, Flat Profile)

How is MPI_Wait()
distributed relative to
solver direction?

Application routine names
reflect phase semantics

176

NAS BT – Phase Profile (Main and X, Y, Z)
Main phase shows nested phases and immediate events

89

177

TAU Timers and Phases

• Static timer
– Shows time spent in all invocations of a routine (foo)
– E.g., “foo()” 100 secs, 100 calls

• Dynamic timer
– Shows time spent in each invocation of a routine
– E.g., “foo() 3” 4.5 secs, “foo 10” 2 secs (invocations 3 and 10 respectively)

• Static phase
– Shows time spent in all routines called (directly/indirectly) by a given routine

(foo)
– E.g., “foo() => MPI_Send()” 100 secs, 10 calls shows that a total of 100 secs

were spent in MPI_Send() when it was called by foo.

• Dynamic phase
– Shows time spent in all routines called by a given invocation of a routine.
– E.g., “foo() 4 => MPI_Send()” 12 secs, shows that 12 secs were spent in

MPI_Send when it was called by the 4th invocation of foo.

178

Performance Dynamics: Phase-Based Profiling

• Profile phases capture
performance with respect
to application-defined
‘phases’ of execution
– Separate full profile produce

for each phase

• GTC particle-in-cell
simulation of fusion
turbulence

• Phases assigned to iterations

• Data change affects cache

increasing phase
execution time

decreasing
flops rate

declining cache
performance

90

179

TAU’s MPI Wrapper Interposition Library

• Uses standard MPI Profiling Interface
– Provides name shifted interface

– MPI_Send = PMPI_Send
– Weak bindings

• Interpose TAU’s MPI wrapper library between MPI and
TAU
– -lmpi replaced by –lTauMpi –lpmpi –lmpi

• No change to the source code! Just re-link the
application to generate performance data
– setenv TAU_MAKEFILE

<dir>/<arch>/lib/Makefile.tau-mpi-[options]
– Use tau_cxx.sh, tau_f90.sh and tau_cc.sh as compilers

180

Using TAU

• Install TAU
– Configuration
– Measurement library creation

• Instrument application
– Manual or automatic source instrumentation
– Instrumented library (e.g., MPI – wrapper interposition library)
– Binary instrumentation

• Create performance experiments
– Integrate with application build environment
– Set experiment variables

• Execute application

• Analyze performance

91

181

Integration with Application Build Environment

• Try to minimize impact on user’s application build procedures

• Handle process of parsing, instrumentation, compilation, linking

• Dealing with Makefiles
– Minimal change to application Makefile
– Avoid changing compilation rules in application Makefile
– No explicit inclusion of rules for process stages

• Some applications do not use Makefiles
– Facilitate integration in whatever procedures used

• Two techniques:
– TAU shell scripts (tau_<compiler>.sh)

– Invokes all PDT parser, TAU instrumenter, and compiler
– TAU_COMPILER

182

Using Program Database Toolkit (PDT)
1. Parse the Program to create foo.pdb:

% cxxparse foo.cpp –I/usr/local/mydir –DMYFLAGS …

or
% cparse foo.c –I/usr/local/mydir –DMYFLAGS …

or
% f95parse foo.f90 –I/usr/local/mydir …

% f95parse *.f –omerged.pdb –I/usr/local/mydir –R free

2. Instrument the program:
% tau_instrumentor foo.pdb foo.f90 –o foo.inst.f90

–f select.tau

3. Compile the instrumented program:
% ifort foo.inst.f90 –c –I/usr/local/mpi/include –o foo.o

92

183

Tau_[cxx,cc,f90].sh – Improves Integration in Makefiles

set TAU_MAKEFILE and TAU_OPTIONS env vars

CC = tau_cc.sh

F90 = tau_f90.sh

CFLAGS =

LIBS = -lm

OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)

$(F90) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)

.c.o:

$(CC) $(CFLAGS) -c $<

.f90.o:

$(F90) $(FFLAGS) –c $<

184

Automatic Instrumentation

• We now provide compiler wrapper scripts
– Simply replace mpxlf90 with tau_f90.sh
– Automatically instruments Fortran source code, links with TAU MPI

Wrapper libraries.

• Use tau_cc.sh and tau_cxx.sh for C/C++

Before
CXX = mpCC
F90 = mpxlf90_r
CFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:
$(CC) $(CFLAGS) -c $<

After
CXX = tau_cxx.sh
F90 = tau_f90.sh
CFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:
$(CC) $(CFLAGS) -c $<

93

185

TAU_COMPILER Commandline Options

• See <taudir>/<arch>/bin/tau_compiler.sh –help

• Compilation:
% mpxlf90 -c foo.f90

Changes to
% f95parse foo.f90 $(OPT1)
% tau_instrumentor foo.pdb foo.f90 –o foo.inst.f90 $(OPT2)
% ftn –c foo.f90 $(OPT3)

• Linking:
% ftn foo.o bar.o –o app

Changes to
% ftn foo.o bar.o –o app $(OPT4)

• Where options OPT[1-4] default values may be overridden by the user:
F90 = tau_f90.sh

186

TAU_COMPILER Options

• Optional parameters for $(TAU_COMPILER): [tau_compiler.sh –help]
-optVerbose Turn on verbose debugging messages
-optCompInst Use compiler based instrumentation
-optDetectMemoryLeaks Turn on debugging memory allocations/

de-allocations to track leaks
-optKeepFiles Does not remove intermediate .pdb and .inst.* files
-optPreProcess Preprocess Fortran sources before instrumentation
-optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor
-optLinking="" Options passed to the linker. Typically

$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
-optCompile="" Options passed to the compiler. Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse)
-optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse)
-optPdtCOpts="" Options for C parser in PDT (cparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
...

94

187

Compiling Fortran Codes with TAU

• If your Fortran code uses free format in .f files (fixed is default for .f), you may use:
% setenv TAU_OPTIONS ‘-optPdtF95Opts=“-R free” -optVerbose ’

• To use the compiler based instrumentation instead of PDT (source-based):
% setenv TAU_OPTIONS ‘-optCompInst -optVerbose’

• If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):
% setenv TAU_OPTIONS ‘-optPreProcess -optVerbose -optDetectMemoryLeaks’

• To use an instrumentation specification file:
% setenv TAU_OPTIONS ‘-optTauSelectFile=mycmd.tau -optVerbose -optPreProcess’
% cat mycmd.tau
BEGIN_INSTRUMENT_SECTION
memory file=“foo.f90” routine=“#”
instruments all allocate/deallocate statements in all routines in foo.f90
loops file=“*” routine=“#”
io file=“abc.f90” routine=“FOO”
END_INSTRUMENT_SECTION

188

Overriding Default Options:TAU_COMPILER

% cat Makefile
F90 = tau_f90.sh
OBJS = f1.o f2.o f3.o …
LIBS = -Lappdir –lapplib1 –lapplib2 …

app: $(OBJS)
$(F90) $(OBJS) –o app $(LIBS)

.f90.o:
$(F90) –c $<

% setenv TAU_OPTIONS ‘-optVerbose
-optTauSelectFile=select.tau -optKeepFiles’

% setenv TAU_MAKEFILE <taudir>/x86_64/lib/Makefile.tau-mpi-pdt

95

189

Optimization of Program Instrumentation

• Need to eliminate instrumentation in frequently executing lightweight routines

• Throttling of events at runtime (default in tau-2.17.2+):
% setenv TAU_THROTTLE 1
Turns off instrumentation in routines that execute over 100000 times (TAU_THROTTLE_NUMCALLS)

and take less than 10 microseconds of inclusive time per call (TAU_THROTTLE_PERCALL). Use
TAU_THROTTLE=0 to disable.

• Selective instrumentation file to filter events
% tau_instrumentor [options] –f <file> OR
% setenv TAU_OPTIONS ’-optTauSelectFile=tau.txt’

• Compensation of local instrumentation overhead
% configure -COMPENSATE
or
% setenv TAU_COMPENSATE 1 (in tau-2.18.2+)

190

ParaProf: Creating Selective Instrumentation File

96

191

Choosing Rules for Excluding Routines

192

Selective Instrumentation File

• Specify a list of routines to exclude or include (case sensitive)

• # is a wildcard in a routine name. It cannot appear in the first column.
BEGIN_EXCLUDE_LIST
Foo
Bar
D#EMM
END_EXCLUDE_LIST

• Specify a list of routines to include for instrumentation
BEGIN_INCLUDE_LIST
int main(int, char **)
F1
F3
END_INCLUDE_LIST

• Specify either an include list or an exclude list!

97

193

Selective Instrumentation File

• Optionally specify a list of files to exclude or include (case sensitive)

• * and ? may be used as wildcard characters in a file name
BEGIN_FILE_EXCLUDE_LIST
f*.f90
Foo?.cpp
END_FILE_EXCLUDE_LIST

• Specify a list of routines to include for instrumentation
BEGIN_FILE_INCLUDE_LIST
main.cpp
foo.f90
END_FILE_INCLUDE_LIST

194

Selective Instrumentation File

• User instrumentation commands are placed in INSTRUMENT section

• ? and * used as wildcard characters for file name, # for routine name

• \ as escape character for quotes

• Routine entry/exit, arbitrary code insertion
• Outer-loop level instrumentation

BEGIN_INSTRUMENT_SECTION
loops file=“foo.f90” routine=“matrix#”
memory file=“foo.f90” routine=“#”
io routine=“matrix#”
[static/dynamic] phase routine=“MULTIPLY”
dynamic [phase/timer] name=“foo” file=“foo.cpp” line=22 to line=35
file=“foo.f90” line = 123 code = " print *, \" Inside foo\""
exit routine = “int foo()” code = "cout <<\"exiting foo\"<<endl;"
END_INSTRUMENT_SECTION

98

195

Instrumentation Specification
% tau_instrumentor
Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]
[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file>]
For selective instrumentation, use –f option
% tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat
% cat selective.dat
Selective instrumentation: Specify an exclude/include list of routines/files.
BEGIN_EXCLUDE_LIST
void quicksort(int *, int, int)
void sort_5elements(int *)
void interchange(int *, int *)
END_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST
Main.cpp
Foo?.c
*.C
END_FILE_INCLUDE_LIST
Instruments routines in Main.cpp, Foo?.c and *.C files only
Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST

196

Instrumentation of OpenMP Constructs

•• OOpenMP PPragma AAnd RRegion IInstrumentor [UTK, FZJ]

• Source-to-Source translator to insert POMP calls
around OpenMP constructs and API functions

• Done: Supports
– Fortran77 and Fortran90, OpenMP 2.0
– C and C++, OpenMP 1.0
– POMP Extensions
– EPILOG and TAU POMP implementations
– Preserves source code information (#line line file)

• tau_ompcheck
– Balances OpenMP constructs (DO/END DO) and detects errors
– Invoked by tau_compiler.sh prior to invoking Opari

• KOJAK Project website http://icl.cs.utk.edu/kojak

99

197

OpenMP API Instrumentation

• Transform
– omp_#_lock() → pomp_#_lock()
– omp_#_nest_lock()→ pomp_#_nest_lock()

[# = init | destroy | set | unset | test]

• POMP version
– Calls omp version internally
– Can do extra stuff before and after call

198

Example: !$OMP PARALLEL DO Instrumentation

!$OMP PARALLEL DO clauses...

do loop

!$OMP END PARALLEL DO

!$OMP PARALLEL other-clauses...

!$OMP DO schedule-clauses, ordered-clauses,
lastprivate-clauses

do loop
!$OMP END DO

!$OMP END PARALLEL DO

NOWAIT

!$OMP BARRIER

call pomp_parallel_fork(d)

call pomp_parallel_begin(d)

call pomp_parallel_end(d)

call pomp_parallel_join(d)

call pomp_do_enter(d)

call pomp_do_exit(d)

call pomp_barrier_enter(d)

call pomp_barrier_exit(d)

100

199

Opari Instrumentation: Example

• OpenMP directive instrumentation
pomp_for_enter(&omp_rd_2);

#line 252 "stommel.c"

#pragma omp for schedule(static) reduction(+: diff) private(j)
firstprivate (a1,a2,a3,a4,a5) nowait

for(i=i1;i<=i2;i++) {

for(j=j1;j<=j2;j++){

new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1]

+ a4*psi[i][j-1] - a5*the_for[i][j];

diff=diff+fabs(new_psi[i][j]-psi[i][j]);

}

}

pomp_barrier_enter(&omp_rd_2);

#pragma omp barrier

pomp_barrier_exit(&omp_rd_2);

pomp_for_exit(&omp_rd_2);

200

Using Opari with TAU

Configure TAU with Opari (used here with MPI and PDT)
% configure –opari -arch=x86_64 -mpi –
pdt=/usr/contrib/TAU/pdtoolkit-3.14.1

% make clean; make install

% setenv TAU_MAKEFILE /tau/<arch>/lib/Makefile.tau-…opari-…

% tau_cxx.sh -c foo.cpp

% tau_cxx.sh -c bar.f90

% tau_cxx.sh *.o -o app

101

201

Dynamic Instrumentation

• TAU uses DyninstAPI for runtime code patching

• Developed by U. Wisconsin and U. Maryland

• http://www.dyninst.org

• tau_run (mutator) loads measurement library

• Instruments mutatee

• MPI issues:
– one mutator per executable image [TAU, DynaProf]
– one mutator for several executables [Paradyn, DPCL]

202

Using DyninstAPI with TAU

Step I: Install DyninstAPI[Download from http://www.dyninst.org]
% cd dyninstAPI-6/core; make

Set DyninstAPI environment variables (including LD_LIBRARY_PATH)

Step II: Configure TAU with Dyninst
% configure –dyninst=/usr/local/dyninstAPI-6

% make clean; make install

Builds <taudir>/<arch>/bin/tau_run
% tau_run [<-o outfile>] [-Xrun<libname>][-f <select_inst_file>] [-v] <infile>

% tau_run –o a.inst.out a.out

Rewrites a.out
% tau_run klargest

Instruments klargest with TAU calls and executes it
% tau_run -XrunTAUsh-papi a.out

Loads libTAUsh-papi.so instead of libTAU.so for measurements

102

203

Virtual Machine Performance Instrumentation

• Integrate performance system with VM
– Captures robust performance data (e.g., thread events)
– Maintain features of environment

– portability, concurrency, extensibility, interoperation
– Allow use in optimization methods

• JVM Profiling Interface (JVMPI)
– Generation of JVM events and hooks into JVM
– Profiler agent (TAU) loaded as shared object

– registers events of interest and address of callback routine
– Access to information on dynamically loaded classes
– No need to modify Java source, bytecode, or JVM

204

Using TAU with Java Applications

Step I: Sun JDK 1.4+ [download from www.javasoft.com]

Step II: Configure TAU with JDK (v 1.2 or better)
% configure –jdk=/usr/java2 –TRACE -PROFILE

% make clean; make install

Builds <taudir>/<arch>/lib/libTAU.so

For Java (without instrumentation):
% java application

With instrumentation:
% java -XrunTAU application

% java -XrunTAU:exclude=sun/io,java application

Excludes sun/io/* and java/* classes

103

205

TAU Profiling of Java Application (SciVis)

Profile for each
Java thread Captures events

for different Java
packages

24 threads of execution!

global
routine
profile

206

Using TAU with Python Applications

Step I: Configure TAU with Python
% configure –pythoninc=/usr/include/python2.5/include

% make clean; make install

Builds <taudir>/<arch>/lib/<bindings>/pytau.py and tau.py packages

for manual and automatic instrumentation respectively
% setenv PYTHONPATH $PYTHONPATH\:<taudir>/<arch>/lib/[<dir>]

104

207

Python Automatic Instrumentation Example

#!/usr/bin/env/python

import tau

from time import sleep

def f2():

print “ In f2: Sleeping for 2 seconds ”

sleep(2)

def f1():

print “ In f1: Sleeping for 3 seconds ”

sleep(3)

def OurMain():

f1()

tau.run(‘OurMain()’)

Running:
% setenv PYTHONPATH
<tau>/<arch>/lib/bindings-
python

% ./auto.py

Instruments OurMain, f1, f2,
print…

208

Python Instrumentation: SciPy

105

209

Performance Analysis

• paraprof profile browser (GUI)

• pprof (text based profile browser)

• TAU traces can be exported to many different tools
– Vampir/VNG [T.U. Dresden] (formerly Intel (R) Trace Analyzer)
– EXPERT [FZJ]
– Jumpshot (bundled with TAU) [Argonne National Lab] ...

210

Building Bridges to Other Tools: TAU

106

211

TAU Performance System Interfaces

• PDT [U. Oregon, LANL, FZJ] for instrumentation of C++, C99, F95 source code
• PAPI [UTK] for accessing hardware performance counters data
• DyninstAPI [U. Maryland, U. Wisconsin] for runtime instrumentation
• KOJAK [FZJ, UTK]

– Epilog trace generation library
– CUBE callgraph visualizer
– Opari OpenMP directive rewriting tool

• Vampir/VNG Trace Analyzer [TU Dresden]
• VTF3/OTF trace generation library [TU Dresden] (available from TAU website)
• Paraver trace visualizer [CEPBA]
• Jumpshot-4 trace visualizer [MPICH, ANL]
• JVMPI from JDK for Java program instrumentation [Sun]
• Paraprof profile browser/PerfDMF database supports:

– TAU format
– Gprof [GNU]
– HPM Toolkit [IBM]
– MpiP [ORNL, LLNL]
– Dynaprof [UTK]
– PSRun [NCSA]

212

ParaProf – Manager Window

performance
database

metadata

107

213

Performance Database: Storage of MetaData

214

ParaProf Main Window (Lammps)

108

215

ParaProf – Flat Profile (Miranda)

8K processors!node, context, thread

Miranda
� hydrodynamics
� Fortran + MPI
� LLNL

216

ParaProf – Histogram View (Miranda)

8k processors 16k processors

MPI_Alltoall() MPI_Barrier()

109

217

ParaProf – 3D Full Profile (Miranda)

16k processors

218

ParaProf – 3D Scatterplot (Miranda)

• Each point
is a “thread”
of execution

• A total of
four metrics
shown in
relation

• ParaVis 3D
profile
visualization
library
– JOGL

32k processors

110

219

ParaProf – 3D Scatterplot (SWEEP3D CUBE)

220

ParaProf – Callpath Profile (Flash)

Flash
� thermonuclear

flashes
� Fortran + MPI
� U. Chicago

111

221

ParaProf – 3D Full Profile Bar Plot (Flash)

128 processors

222

ParaProf Bar Plot (Zoom in/out +/-)

112

223

ParaProf – Callgraph Zoomed (Flash)

Zoom in (+)
Zoom out (-)

224

ParaProf - Thread Statistics Table (GSI)

113

225

ParaProf - Callpath Thread Relations Window

Parent

Routine

Children

226

Vampir – Trace Analysis (TAU-to-VTF3) (S3D)

S3D
� 3D combustion
� Fortran + MPI
� PSC

114

227

Vampir – Trace Zoomed (S3D)

228

PerfDMF: Performance Data Mgmt. Framework

115

229

TAU Portal - www.paratools.com/tauportal

230

TAU Portal

116

231

TAU Portal

• Web-based access to TAU

• Support collaborative performance study
– Secure performance data sharing
– Does not require TAU installation
– Launch TAU performance tools with Java WebStart

– ParaProf, PerfExplorer

• FLASH regression testing
– Nightly regression testcases
– Uploaded to the database automatically
– Interactive review of performance through TAU portal
– Multi-experiment analysis

232

Portal: Nightly Performance Regression Testing

117

233

TAU Portal: Launch ParaProf/PerfExplorer

234

PerfExplorer: Regression Testing

118

235

PerfExplorer: Limiting Events (> 3%), Oct 2007

236

PerfExplorer: Exclusive Time for Events (2007)

119

237

Using Performance Database (PerfDMF)

• Configure PerfDMF (Done by each user)
% perfdmf_configure --create-defaults

– Choose derby, PostgreSQL, MySQL, Oracle or DB2
– Hostname
– Username
– Password
– Say yes to downloading required drivers (we are not allowed to distribute these)
– Stores parameters in your ~/.ParaProf/perfdmf.cfg file

• Configure PerfExplorer (Done by each user)
% perfexplorer_configure

• Execute PerfExplorer
% perfexplorer

238

PerfDMF and the TAU Portal

• Development of the TAU portal
– Common repository for collaborative data sharing
– Profile uploading, downloading, user management
– Paraprof, PerfExplorer can be launched from the portal using Java

Web Start (no TAU installation required)

• Portal URL
http://tau.nic.uoregon.edu

120

239

Performance Data Mining (Objectives)

• Conduct parallel performance analysis process
– In a systematic, collaborative and reusable manner
– Manage performance complexity
– Discover performance relationship and properties
– Automate process

• Multi-experiment performance analysis

• Large-scale performance data reduction
– Summarize characteristics of large processor runs

• Implement extensible analysis framework
– Abstraction / automation of data mining operations
– Interface to existing analysis and data mining tools

240

Performance Data Mining (PerfExplorer)

• Performance knowledge discovery framework
– Data mining analysis applied to parallel performance data

– comparative, clustering, correlation, dimension reduction, …
– Use the existing TAU infrastructure

– TAU performance profiles, PerfDMF
– Client-server based system architecture

• Technology integration
– Java API and toolkit for portability
– PerfDMF
– R-project/Omegahat, Octave/Matlab statistical analysis
– WEKA data mining package
– JFreeChart for visualization, vector output (EPS, SVG)

121

241

Performance Data Mining (PerfExplorer)

242

PerfExplorer - Analysis Methods

• Data summaries, distributions, scatter plots

• Clustering
– k-means
– Hierarchical

• Correlation analysis

• Dimension reduction
– PCA
– Random linear projection
– Thresholds

• Comparative analysis

• Data management views

122

243

PerfExplorer - Cluster Analysis

• Performance data represented as vectors - each
dimension is the cumulative time for an event

• k-means: k random centers are selected and instances
are grouped with the "closest" (Euclidean) center

• New centers are calculated and the process repeated
until stabilization or max iterations

• Dimension reduction necessary for meaningful results

• Virtual topology, summaries constructed

244

PerfExplorer - Cluster Analysis (sPPM)

123

245

PerfExplorer - Cluster Analysis

• Four significant events automatically selected (from 16K
processors)

• Clusters and correlations are visible

246

PerfExplorer - Correlation Analysis (Flash)

• Describes strength and direction of a linear relationship
between two variables (events) in the data

124

247

PerfExplorer - Correlation Analysis (Flash)

• -0.995 indicates strong,
negative relationship

• As CALC_CUT_
BLOCK_CONTRIBUTIO
NS() increases in
execution time,
MPI_Barrier() decreases

248

PerfExplorer - Comparative Analysis

• Relative speedup, efficiency
– total runtime, by event, one event, by phase

• Breakdown of total runtime

• Group fraction of total runtime

• Correlating events to total runtime

• Timesteps per second

• Performance Evaluation Research Center (PERC)
– PERC tools study (led by ORNL, Pat Worley)
– In-depth performance analysis of select applications
– Evaluation performance analysis requirements
– Test tool functionality and ease of use

125

249

PerfExplorer - Interface

Select experiments
and trials of interest

Data organized in application,
experiment, trial structure
(will allow arbitrary in future)

Experiment
metadata

250

PerfExplorer - Interface

Select analysis

126

251

PerfExplorer - Relative Efficiency Plots

252

PerfExplorer - Relative Efficiency by Routine

127

253

PerfExplorer - Timesteps Per Second

254

PerfExplorer - Relative Efficiency

128

255

PerfExplorer - Relative Speedup by Event

256

PerfExplorer - Runtime Breakdown

129

257

B3-gtc

PerfExplorer - Timesteps per Second for GYRO

• Cray X1 is the fastest to solution
– In all 3 tests

• FFT (nl2) improves time
– B3-gtc only

• TeraGrid faster than p690
– For B1-std?

• All plots generated automatically

B1-std

B2-cy B3-gtc

TeraGrid

258

PerfExplorer - Relative Efficiency (B1-std)

• By experiment (B1-std)
– Total runtime (Cheetah (red))

• By event for one experiment
– Coll_tr (blue) is significant

• By experiment for one event
– Shows how Coll_tr behaves for all

experiments

16 processor
base case

Cheetah Coll_tr

130

259

PerfExplorer - Runtime Breakdown

260

Group % of Total

Communication grows to
over 60% of total runtime
Communication grows to
over 60% of total runtime

At each timestep, 230 messages
between

all boundaries: MPI_Bcast = 26%,
MPI_Wait = 25% of total for N=1024

At each timestep, 230 messages
between

all boundaries: MPI_Bcast = 26%,
MPI_Wait = 25% of total for N=1024

131

261

TAU Integration with IDEs

• High performance software development environments
– Tools may be complicated to use
– Interfaces and mechanisms differ between platforms / OS

• Integrated development environments
– Consistent development environment
– Numerous enhancements to development process
– Standard in industrial software development

• Integrated performance analysis
– Tools limited to single platform or programming language
– Rarely compatible with 3rd party analysis tools
– Little or no support for parallel projects

262

TAU and Eclipse

• Provide an interface for configuring TAU’s automatic instrumentation within
Eclipse’s build system

• Manage runtime configuration settings and environment variables for
execution of TAU instrumented programs

C/C++/Fortran
Project in Eclipse

Add or modify
an Eclipse build

configuration w/ TAU

Temporary copy
of instrumented code

Compilation/linking
with TAU libraries

TAU instrumented
libraries

Program
execution

Performance
data

Program
output

132

263

TAU and Eclipse

PerfDMF

264

Choosing PAPI Counters with TAU in Eclipse

% /usr/global/tools/pkgs/eclipse/eclipse

133

265

TAU Performance System Status

• Computing platforms (selected)
– IBM SP/pSeries/BGL/Cell PPE, SGI Altix/Origin, Cray T3E/SV-

1/X1/XT3, HP (Compaq) SC (Tru64), Sun, Linux clusters (IA-32/64,
Alpha, PPC, PA-RISC, Power, Opteron), Apple (G4/5, OS X), Hitachi
SR8000, NEC SX Series, Windows …

• Programming languages
– C, C++, Fortran 77/90/95, HPF, Java, Python

• Thread libraries (selected)
– pthreads, OpenMP, SGI sproc, Java,Windows, Charm++

• Compilers (selected)
– Intel, PGI, GNU, Fujitsu, Sun, PathScale, SGI, Cray, IBM, HP, NEC,

Absoft, Lahey, Nagware, ...

266

Part V: VAMPIRTRACE & VAMPIR
INTRODUCTION AND OVERVIEW

134

267

Overview

• Introduction
• Event Trace Visualization
• Vampir & VampirServer
• The Vampir Displays

– Timeline
– Process Timeline with Performance Counters
– Summary Display
– Message Statistics

• VampirTrace
– Instrumentation & Run-Time Measurement

• Conclusions

268

VampirServer Architecture

Merged
Traces

Analysis Server

Classic
Analysis:

Worker 1

Worker 2

Worker m

Master

Trace 1
Trace 2

Trace 3
Trace N

File System

InternetInternet

Parallel Program
Monitor
System

Event Streams

Visualization Client

Segment
Indicator

768 Processes
Thumbnail View

Timeline with
16 Traces visible

Process
Parallel I/O Message

Passing

135

269

Vampir Displays

The main displays of Vampir:

• Global Timeline
• Process Timeline w/o Counters
• Statistic Summary
• Summary Timeline
• Message Statistics
• Collective Operation Statistics
• Counter Timeline
• Call Tree

270

Vampir Global Timeline Display

136

271

Process Timeline Display

272

Process Timeline with Counters

137

273

Statistic Summary Display

274

Summary Timeline Display

138

275

Message Statistics Display

276

Collective Operation Statistics

139

277

Counter Timeline Display

278

Call Tree Display

140

279

Open Trace Format (OTF)

• Open source trace file format
• Available at http://www.tu-dresden.de/zih/otf/
• Includes powerful libotf for reading/parsing/writing

in custom applications
• multi-level API:

– High level interface for analysis tools
– Low level interface for trace libraries

• Actively developed in cooperation with the
University of Oregon and the Lawrence Livermore
National Laboratory

280

Hands-on: VampirServer

141

281
Parallel Performance Evaluation Tools for HPC Systems: ICCS ‘09

Hands-on: More Displays

282
Parallel Performance Evaluation Tools for HPC Systems: ICCS ‘09

Hands-on: More Displays

142

283

Hands-on: Performance Counters

284

Extra Manual Instrumentation

143

285

Finding Performance Bottlenecks

286

Finding Bottlenecks

• Trace Visualization
– Vampir provides a number of display types
– each allows many different options

• Advice
– identify essential parts of an application (initialization, main iteration,

I/O, finalization)
– identify important components of the code (serial computation, MPI

P2P, collective MPI, OpenMP)
– make a hypothesis about performance problems
– consider application's internal workings if known
– select the appropriate displays
– use statistic displays in conjunction with timelines

144

287

Finding Bottlenecks

– Communication
– Computation
– Memory, I/O, etc
– Tracing itself

288

Bottlenecks in Communication

– communication as such
(dominating over computation)

– late sender, late receiver
– point-to-point messages instead of

collective communication
– unmatched messages
– overcharge of MPI’s buffers
– bursts of large messages (bandwidth)
– frequent short messages (latency)
– unnecessary synchronization (barrier)

all of the above usually result in high MPI time share

288

Parallel Performance Evaluation Tools for HPC Systems: ICCS ‘09

145

289

Example: prevalent communication

Bottlenecks in Communication

290

prevalent communication: MPI_Allreduce

Bottlenecks in Communication

146

291

prevalent communication: timeline view

Bottlenecks in Communication

292

Propagated Delays in MPI_SendReceiveReplace

Bottlenecks in Communication

147

293

unnecessary MPI_Barriers

Bottlenecks in Communication

294

Patterns of Successive MPI_Allreduce Calls

Bottlenecks in Communication

148

295

Further Bottlenecks

– unbalanced computation
– single late comer

– strictly serial parts of program
– idle processes/threads

– very frequent tiny function calls
– sparse loops

296

Example: Idle OpenMP threads

Further Bottlenecks

149

297

Bottlenecks in Computation

– memory bound computation
– inefficient L1/L2/L3 cache usage
– TLB misses
– detectable via HW performance counters

– I/O bound computation
– slow input/output
– sequential I/O on single process
– I/O load imbalance

– exception handling

298

low FP rate due to heavy cache misses

Bottlenecks in Communication

150

299

low FP rate due to heavy FP exceptions

Bottlenecks in Communication

300

irregular slow I/O operations

Bottlenecks in Communication

151

301

Effects due to Tracing Itself

– measurement overhead
– esp. grave for tiny function calls
– solve with selective instrumentation

– long/frequent/asynchronous trace buffer flushes
– too many concurrent counters

– heisenbugs

302

Trace buffer flushes are explicitly marked in the trace.
It is rather harmless at the end of a trace as shown here.

Effects due to Tracing Itself

152

303

Conclusion and Outlook

– performance analysis very important in HPC

– use performance analysis tools for profiling and tracing
– do not spend effort in DIY solutions,

e.g. like printf-debugging

– use tracing tools with some precautions
– overhead
– data volume

– let us know about problems and about feature wishes
– vampirsupport@zih.tu-dresden.de

304

Vampir and VampirTraces are

available at http://www.vampir.eu and

http://www.tu-dresden.de/zih/vampirtrace/ ,

get support via vampirsupport@zih.tu-dresden.de

153

305

Jumpshot

• http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm

• Developed at Argonne National Laboratory as part of the MPICH
project
– Also works with other MPI implementations
– Installed on NAVO IBM and ERDC XT3/4
– Jumpshot is bundled with the TAU package

• Java-based tracefile visualization tool for postmortem performance
analysis of MPI programs

• Latest version is Jumpshot-4 for SLOG-2 format
– Scalable level of detail support
– Timeline and histogram views
– Scrolling and zooming
– Search/scan facility

306

Jumpshot

154

307

Part VI: KOJAK/Scalasca

308

Overview

• Introduction
– Motivation for automatic trace analysis

• Scalasca components and usage
– instrumentation
– measurement collection & automated analysis
– analysis report exploration

• Demonstration

• Summary

155

309

Motivation

• Tracing offers critical insight into temporal behaviour of parallel execution unavailable
from summarization

– Inefficiencies manifest as wait states and imbalance

• Trace sizes proportional to number of processes/threads
– as well as length of measurement and depth of detail

• Large-scale parallel traces must be carefully managed
– minimization/elimination of disruptive file I/O
– efficient parallel analysis of traces
– effective hierarchical/graphical analysis presentation

• Simplification and ease-of-use
– Automation of search for and classification of event patterns
– Integration with trace visualizers to examine key instances

310

Automatic Trace Analysis
• Idea:

– Automatic search for patterns of inefficient behaviour
– Classification of behaviour
– Quantification of significance

• Quicker than manual analysis
• Guaranteed to cover the entire event trace

Call
path

P
ro

pe
rty

Location

Low-level
event trace

High-level
result

Analysis ≡

156

311

CUBE Result Browser

• Representation of results (severity matrix)
along three hierarchical axes

– Performance property
– Call tree path
– System location

• Three coupled tree browsers

• Each node displays severity
– As colour: for easy identification of hotspots
– As value: for precise comparison
– Inclusive value when closed or exclusive when expanded
– Customizable via display mode

Call
path

P
ro

pe
rty

Location

312

Basic Analysis Presentation

How is it distributed
across the system?

What kind of
performance

problem?

Where is it in the
source code?

In what context?

157

313

Summary Profile Analysis

Selected
metric has

13% of total
CPU time

45% of which was found
on selected call-path

distributed on
processes

according to
application's

Cartesian
topology

314

Trace Pattern Analysis

Extra metrics
calculated from

event trace

158

315

Analysis Methodology
• Instrumentation of application executable and libraries

– automatic MPI, OpenMP and function instrumentation
– complementary manual region and phase instrumentation

• Execution of instrumented executable under control of configurable measurement
collection & analysis nexus

– commence from scalable runtime summary
– identify excess instrumentation and trace buffer requirements

– target tracing where it is most productive (and practical)
– analyze traces using same resources as measurement

• Interactive analysis report exploration and algebra
– examine severities and their locations
– combine, compare and process reports

• Refine and repeat as necessary

316

Scalasca
Components

• Scalasca instrumenter
= SKIN

• Scalasca measurement
collector & analyzer
= SCAN

• Scalasca analysis
report examiner
= SQUARE

program
sources

unified
defs+maps trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

summary
analysis

analysis report examiner

instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUTparallel trace analyzer

expt config

159

317

Scalasca unified command: scalasca

• Run without action argument for basic usage info
% scalasca
usage: scalasca [-v][-n] {action}
1. prepare application objects and executable for measurement:

scalasca -instrument <compile-or-link-command> # skin
2. run application under control of measurement system:

scalasca -analyze <application-launch-command> # scan
3. interactively explore measurement analysis report:

scalasca -examine <experiment-archive|report> # square

• Simply a convenience wrapper for action commands

318

Scalasca instrumenter: skin

• Usage: scalasca -instrument [opts] $CC ...
– scalasca -instrument -user mpicc -fast -c bar.c
– skin mpif90 -Openmp -o foobar -fast foo.c bar.o -lm

• Processes source modules during compile & augments link with measurement library
– Configures automatic function instrumentation capability of native compiler (if

available)
– All functions in source module(s) are instrumented

– [–pomp] option enables processing of POMP directives
– Optional manual source annotation of functions & regions
– Replaces automatic function instrumentation

– [–user] activates EPIK user-annotation API

160

319

Scalasca collector & analyzer: scan

• Usage: scalasca -analyze [opts] <launch command>
– scan [opts] [launcher [args]] [target [target-args]]

• Prepares & runs measurement collection,
with follow-on trace analysis (if appropriate)

– [-n] preview without executing launches
– [-s] enables runtime summarization [default]
– [-t] enables trace collection & automatic pattern analysis
– determines NP and/or NT (number of processes & threads) and

MODE=vn|co|dual|smp (where appropriate)
– names default measurement experiment archive

epik_$(TARGET)_$(MODE)$(NP)x$(NT)_[sum|trace]
– [-f filter] specifies file listing functions not to be measured
– [-m metric1:metric2:...] includes hardware counter metrics

320

Scalasca analysis report explorer: square

• Usage: scalasca -examine <epik_archive | cubefile >
– scalasca -examine epik_sweep3d_co32_trace
– square epik_sweep3d_co32_trace/summary.cube

• Prepares & presents final analysis report
– Checks EPIK archive directory for cubefiles
– Remaps primitive initial analysis report(s) into refined formal report(s) with

enriched metrics & metric hierarchies
– epitome.cube -> summary.cube
– scout.cube -> trace.cube

– Presents refined report in CUBE3 browser
– Trace analysis shown in preference to summary analysis
– Additional reports can be loaded via File/Open menu

161

321

EPIK experiment archive

• Directory created by measurement library
– Measurement aborts if archive already exists!

• Contains all files related to measurement
– Measurement & analysis logs (epik.log, scout.log, etc.)
– Primitive analysis reports (epitome.cube, scout.cube)
– Refined analysis reports (summary.cube, trace.cube)
– Process trace datafiles (ELG/*)
– Unified definitions & map data (epik.esd, epik.map)
– Miscellaneous (epik.conf, epik.filt, epik.path)

322

EPIK measurement configuration

• epik_conf reports current configuration
– logged in measurement archive as epik.conf

• Read from EPIK.CONF file(s)
– System default: $SCALASCA_DIR/doc
– Directory specified with EPIK_CONF environment variable [defaults to “.”]

• Over-ridden by environment variables
– with same names as configuration file variables

• Over-ridden by scan command-line settings

162

323

Trace collection & analysis issues
• Process rank trace too large for trace collection buffers

– Results in intermediate trace buffer flushes
(with remainder flushed at measurement finalization)

– Serious measurement perturbation!

• Irrelevant functions encumber analysis
– Undesirable complexity and processing slowdown
– Parallel trace analyzer requires memory more than twice largest rank

(uncompressed) trace size to load entire trace

• Options
– enlarge trace buffer size: ELG_BUFFER_SIZE

– cube3_score utility provides estimate from summary
– remove selected function instrumentation
– specific function measurement filter (if supported!)

324

Selective instrumentation/measurement

• Unimportant functions can be determined from summary analysis report
– form leaves of callpath-tree (w/o MPI)
– negligible proportion of (exclusive) execution time
– high proportion of (exclusive) visit count
– cube3_score -r provides region breakdown & classification

– MPI, USR (no MPI), COM (combined/intermediate)

• Eliminating pure user (USR) regions reduces overheads
– runtime processing, storage & analysis

• Makes them “invisible” in the analysis
– logically become part of their calling functions

(as if they were in-lined by an optimizing compiler!)

163

325

Scalasca runtime
summarization

• Event measurements accumulated and summarized for each call-path
during runtime execution

• Summary report produced at finalization

• Provides overview of measured execution
– contains call-path Visit frequency, Time,

and MPI message statistics
– plus optional hardware counter metrics
– size independent of length of execution

• Scales to long execution measurements

326

Scalasca trace analysis

• Trace analysis based on parallel replay
– enables scalability to thousands of processes
– however, only suited to relatively brief measurements!

• Extends summary metric analysis
– Summary can help configure selective tracing

• Allows execution performance properties to be more accurately determined
and refined

• Can be combined with complementary runtime summary analysis
– avoiding storage/processing overhead of hardware counter metrics in

traces via direct summarization

164

327

Measurement support

• OpenMP compilers
– GCC
– IBM XL
– Intel
– Pathscale
– PGI
– Sun Studio
– ...

• Supported functionality varies by
language, version & system

• MPI libraries
– MPICH 1 & 2
– OpenMPI
– Intel-MPI
– IBM POE & BlueGene
– Cray XT
– Sun HPC ClusterTools
– SGI MPToolkit
– SiCortex MPI
– Scali-MPI
– HP-MPI
– LAM

328

Basic use of Scalasca

• Automatic function instrumentation
– Supported by most but not all compilers!

• Summary measurement experiment

• Summary analysis report exploration

• Trace collection & analysis experiment

• Trace pattern analysis report exploration

165

329

CUBE metrics dimension

What kind of
performance

problem? Right-click metric
context menu for
info or description

330

CUBE call tree dimension

Where is it in the
source code?

In what context?

Right-click function
context menu to go
to source location

166

331

Alternative: Flat profile

Aggregate values
per function and
its subroutines

332

System tree dimension

How is it distributed
across the system?

167

333

Alternative: Topology display

View/Topology
menu
adjusts topology
view

334

Topology display

• Topology information is recorded for
– the hardware (supported on some systems)
– MPI topologies (e.g., MPI_Cart_create())
– user-defined virtual topologies (under construction)

• Advantage
– Better scalability than text-based system tree

• Restriction
– Currently supports only 1D, 2D and 3D Cartesian topologies

168

335

Status fields

Absolute value
Percentage

Hierarchy total

Mean value
& variation

Maximum value /
value range

336

Display modes

• Absolute
– Absolute values in seconds/number of occurrences

• Root percent
– Percentage relative to the root node of the hierarchy

• External percent
– Similar to “Root percent”, but relative to another data set

• Selection percent
– Percentage relative to the node selected in the neighbouring

column on the left

169

337

Display modes (system tree/topology only)

• Peer percent
– Percentage relative to maximum of peer values

(all values of the current leaf level)

• Peer distribution
– Percentage relative to maximum and non-zero minimum

of peer values

338

Display mode example

14.6% of total
CPU time

62.9% of
point-to-point time

blue = minimum,
non-zero value

red = maximum value

170

339

Generic metrics

Time

Execution

Overhead

Visits

Hardware counters

Total CPU allocation time

Execution time without overhead

Time spent in activities related to
measurement (not including dilation
per instrumented routine/region!)

Number of times a routine/region
was executed

Aggregated counter values for each
routine/region

340

MPI Time hierarchy

Time

Execution

Communication

MPI

Synchronization

File I/O

Init/Exit

Overhead

Collective

Point-to-point

Collective

171

341

MPI Time hierarchy (cont.)

Time

Execution

Communication

MPI

Synchronization

Init/Exit

Overhead

Total CPU allocation time

Execution time without overhead

Time spent in pre-instrumented MPI functions

Time spent in MPI synchronization calls

Time spent in MPI_Init() and MPI_Finalize()

Time spent in tasks related to measurement
(not including dilation from instrumentation!)

Time spent in MPI communication calls,
subdivided into collective and point-to-point

File I/O Time spent in MPI file I/O functions

342

MPI Communications hierarchy

• Provides the number of calls to an MPI communication function
of the corresponding class

• Zero-sized message transfers are
considered synchronization!

Communications

Collective

As Source

Exchange

Sends

As Destination

Point-to-point

Receives

172

343

MPI Synchronizations hierarchy

• Provides the number of calls to an MPI synchronization function
of the corresponding class

• MPI synchronizations include zero-sized message transfers!

Synchronizations

Collective

Sends

Point-to-point

Receives

344

MPI Bytes transferred hierarchy

• Provides the number of bytes transferred by an MPI communication function of the
corresponding class

Bytes transferred

Collective

Incoming

Outgoing

Sent

Point-to-point

Received

173

345

Combined trace collection & analysis

• Modify jobscript
– Use “scan -t” (or set EPK_TRACE=1)
– Trace experiment EPK_TITLE set to

$(TARGET)_$(MODE)$(NP)_trace
– Creates new experiment archive directory ./epik_$(EPK_TITLE)
– Trace unified & buffers flushed at measurement finalization
– Automatic trace pattern analysis immediately follows

• Explore trace pattern analysis report using CUBE

346

Trace analysis output example

SCOUT

Analyzing experiment archive ./epik_sweep3d_co32_trace

Reading definition files ... done
Reading event trace files ... done
Preprocessing ... done
Analyzing event traces ... done
Writing report ... done

Total processing time: 4.083s
Total number of events: 5206596
Max. memory usage: 15.453 MB

174

347

Trace analysis result

Additional
metrics

348

MPI collective synchronization time

MPI

Synchronization

Wait at Barrier

Collective

Barrier Completion

Communication

MPI I/O

Init/Exit

175

349

Wait at Barrier = Early Barrier

• Time spent waiting in front of a barrier call until the last process reaches the barrier
operation

• Applies to: MPI_Barrier()

time

lo
ca

tio
n

MPI_Barrier

MPI_Barrier

MPI_Barrier

MPI_Barrier

350

Barrier Completion

• Time spent in barrier after the first process has left the operation
• Applies to: MPI_Barrier()

time

lo
ca

tio
n

MPI_Barrier

MPI_Barrier

MPI_Barrier

MPI_Barrier

176

351

Point-to-point

MPI collective communication time

MPI

Communication

Early Reduce

Collective

Early Scan

Late Broadcast

Wait at N x N

N x N Completion

Synchronization

352

Wait at N x N = Early N x N

• Time spent waiting in front of a synchronizing collective operation call until the last process
reaches the operation

• Applies to: MPI_Allreduce(), MPI_Alltoall(), MPI_Alltoallv(),
MPI_Allgather(), MPI_Allgatherv(), MPI_Reduce_scatter()

time

lo
ca

tio
n

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

177

353

N x N Completion

• Time spent in synchronizing collective operations after the first process has left the
operation

• Applies to: MPI_Allreduce(), MPI_Alltoall(), MPI_Alltoallv(),
MPI_Allgather(), MPI_Allgatherv(), MPI_Reduce_scatter()

time

lo
ca

tio
n

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

354

Late Broadcast = Early Broadcast

• Waiting times of the destination processes of a collective 1-to-N communication operation which
enter the operation earlier than the source process (root)

– Late Broadcast by source = Early Broadcast by destinations
• Applies to: MPI_Bcast(), MPI_Scatter(),

MPI_Scatterv()

time

lo
ca

tio
n

MPI_Bcast (root)

MPI_Bcast

MPI_Bcast

MPI_Bcast

178

355

Early Reduce

• Waiting time if the destination process (root) of a collective N-to-1 communication
operation enters the operation earlier than its sending counterparts

• Applies to: MPI_Reduce(), MPI_Gather(), MPI_Gatherv()

time

lo
ca

tio
n

MPI_Reduce

MPI_Reduce

MPI_Reduce (root)

MPI_Reduce

356

Early Scan

• Waiting time if process n enters a prefix reduction operation earlier than its sending
counterparts (i.e., ranks 0..n-1)

• Applies to: MPI_Scan()

time

lo
ca

tio
n

MPI_Scan

MPI_Scan

MPI_Scan

MPI_Scan

3

2

1

0

179

357

Point-to-point

MPI point-to-point communication time

Communication

Late Sender

Collective

Msg. in Wrong Order

Same Source

Different Source

Late Receiver

MPI

Synchronization

358

Late Sender = Early Receive

• Waiting time caused by a blocking receive operation posted earlier than the
corresponding send operation

• Applies to blocking as well as
non-blocking communication

time

lo
ca

tio
n

MPI_Recv MPI_Irecv

MPI_Send

MPI_Wait

MPI_Send

time

lo
ca

tio
n

MPI_Recv MPI_Irecv

MPI_Isend

MPI_Wait

MPI_IsendMPI_Wait MPI_Wait

180

359

Late Sender = Early Receive (cont.)

• While waiting for several messages, the maximum waiting time
is accounted

• Applies to: MPI_Waitall(), MPI_Waitsome()

time

lo
ca

tio
n

MPI_Send

MPI_Irecv MPI_Waitall

MPI_Send

360

Late Sender, Messages in Wrong Order

• Refers to Late Sender situations which are caused by messages received in wrong
order

– Early receive of message out of order
• Comes in two flavours:

– Messages sent from same source location
– Messages sent from different

source locations

time

lo
ca

tio
n

MPI_RecvMPI_Recv

MPI_Send

MPI_Send

MPI_RecvMPI_Recv

MPI_Send MPI_Send

181

361

Late Receiver = Early Send

• Waiting time caused by a blocking send operation posted earlier than the corresponding
receive operation

• Does not apply to non-blocking sends

time

lo
ca

tio
n

MPI_Recv MPI_Irecv

MPI_Send

MPI_Wait

MPI_Send

362

OpenMP Time hierarchy

Time

Execution

Synchronization

OpenMP

Fork

Flush

Idle Threads

Overhead

MPI

182

363

OpenMP Time hierarchy details

OpenMP

Synchronization

Flush

Fork

Idle Threads

Time spent for all OpenMP-related tasks

Time spent by master thread to create thread teams

Time spent idle on CPUs reserved for slave threads

Time spent synchronizing OpenMP threads

Time spent in OpenMP flush directives

364

OpenMP synchronization time

OpenMP

Synchronization

Explicit

Barrier

Wait at Barrier

Lock Competition

API

Wait at Barrier

Implicit

Critical

183

365

Wait at Barrier = Early Barrier

• Time threads spend waiting in front of a barrier call until the last thread reaches the
barrier operation

• Applies to: Implicit/explicit barriers

time

lo
ca

tio
n

OpenMP barrier

OpenMP barrier

OpenMP barrier

OpenMP barrier

366

Lock competition

• Time a thread spends waiting for a lock that is held by other threads until it is released
and can be acquired by this thread

• Applies to: critical sections, OpenMP lock API

time

lo
ca

tio
n

Acquire Lock Release Lock

Acquire Lock Release Lock

184

367

Other metrics

• LateReceivers/LateSenders
– counts shown in hierarchies of Synchronizations & Communications

below Sends & Receives respectively

• Computational Imbalance
– load imbalance heuristic calculated as absolute difference from average

exclusive execution time

• HWC metrics
– shown as separate root metrics for each counter
– only provided in summary reports

368

Intermediate use of Scalasca
• User-defined region instrumentation

– EPIK annotation macros API
– POMP annotation directives

Selective instrumentation

• Summary collections & analysis experiment

• Trace collection & analysis experiment

• Analysis report effectiveness score

• Customisation of measurement collection
– Sizing of measurement data structures (e.g., trace buffers)
– Function filter configuration
– Optional HWC metrics

• Analysis report algebra

185

369

Instrumentation/measurement configuration

• Selective instrumentation
– Adjust build not to (auto-)instrument particular modules
– Separate/preprocess sources for functions in same module
– Entirely avoids instrumentation & overhead

• Selective measurement via function filtering
– Supported for GCC, IBM & Intel compilers
– Specify text file listing names of functions (one per line, shell wildcarding) to

ignore with EPK_FILTER
– Use linker/decorated function names [Fortran/C++]

370

cube3_score with (sorted) region breakdown
% cube3_score -r epik_smg2000_mano_64/summary.cube | sort ...
flt type max_tbc time % region
...

MPI 2061936 293.30 23.89 MPI_Waitall
COM 2346840 14.79 1.20 hypre_FinalizeCommunication
COM 2346840 23.49 1.91 hypre_InitializeCommunication
MPI 7495240 11.38 0.93 MPI_Irecv
MPI 8149850 41.43 3.37 MPI_Isend
USR 9426048 10.47 0.85 hypre_StructStencilElementRank
USR 9426048 21.69 1.77 hypre_StructMatrixExtractPointerByIdx
USR 11063016 16.80 1.37 hypre_MAlloc$AF10_5
USR 11454432 25.82 2.10 hypre_MAlloc
USR 11763336 26.90 2.19 hypre_CAlloc
USR 23496576 38.16 3.11 hypre_Free

ANY 162589938 1227.61 100.00 ALL (254 regions)
MPI 17649090 456.64 37.20 + MPI (13 regions) pure MPI
COM 9905832 321.80 26.21 + COM (32 regions) combined
MPI&USR
USR 135034968 311.13 25.34 + USR (207 regions) pure User

max_tbc = est. maximum trace buffer capacity requirement (bytes/process)
to store all events that would be generated in an equivalent trace

186

371

cube3_score with trial region filter
% cube3_score -r -f smg2000.filt epik_smg2000_mano_64/summary.cube | sort
flt type max_tbc time % region
...
- MPI 2061936 293.30 23.89 MPI_Waitall
- COM 2346840 14.79 1.20 hypre_FinalizeCommunication
- COM 2346840 23.49 1.91 hypre_InitializeCommunication
- MPI 7495240 11.38 0.93 MPI_Irecv
- MPI 8149850 41.43 3.37 MPI_Isend
+ USR 9426048 10.47 0.85 hypre_StructStencilElementRank
+ USR 9426048 21.69 1.77 hypre_StructMatrixExtractPointerByIdx
+ USR 11063016 16.80 1.37 hypre_MAlloc$AF10_5
+ USR 11454432 25.82 2.10 hypre_MAlloc
+ USR 11763336 26.90 2.19 hypre_CAlloc
+ USR 23496576 38.16 3.11 hypre_Free

- ANY 162589938 1227.61 100.00 ALL (253 regions)
- MPI 17649090 456.64 37.20 + MPI (13 regions) pure MPI
- COM 9905832 321.80 26.21 + COM (32 regions) combined
MPI&USR
- USR 135034968 311.13 25.34 + USR (207 regions) pure User

+ FLT 103570824 182.11 14.83 FLT (9 regions) filtered
- FLT 59019114 1045.50 85.17 ALL-FLT (244 regions) remainder

372

Preparation of instrumented executable

• Auto-instrumentation of functions
– Capability of most (but not all) compilers
– Currently need separate Scalasca installations for each desired combination of

MPI library & compiler suite
– $(PREP) $(MPIFC) ...
– $(PREP) $(MPICC) ...
– $(PREP) $(MPICXX) ...
– PREP="skin $(SKIN_OPTS)" for instrumented build
– PREP="" for uninstrumented build for production

• Auto-instrumentation plus API for user-defined regions
– #include "epik_user.inc" or "epik_user.h"
– % skin -user $(MPIC) ...

187

373

Manual instrumentation options

• No instrumentation
– $(MPIC) [`kconfig -cflags`]

• MPI library instrumentation
– $(MPIC) [`kconfig -cflags`] `kconfig -libs`

• MPI library & EPIK user instrumentation
– $(MPIC) `kconfig -cflags` `kconfig -libs` -DEPIK

• `kconfig -cflags` is optional for source modules without explicit EPIK API
#include

374

EPIK instrumentation API dummy macros

• To use unmodified compile commands (without EPIK API
include path) for sources with EPIK API calls, define
dummy macros

#ifdef EPIK
#include "epik_user.inc" or "epik_user.h"
#else
#define EPIK_FUNC_REG(str) /* undefined */
#define EPIK_FUNC_START() /* undefined */
#define EPIK_FUNC_END() /* undefined */
#define EPIK_USER_REG(id,str) /* undefined */
#define EPIK_USER_START(id) /* undefined */
#define EPIK_USER_END(id) /* undefined */
#endif

188

375

EPIK instrumentation API

• Manual phase annotation
– EPIK_FUNC_REG("Fortran function/subroutine")
– EPIK_FUNC_START()
– EPIK_USER_REG(tsloop, "<<time step>>")
– EPIK_USER_START(tsloop)
– EPIK_USER_END(tsloop)
– EPIK_FUNC_END()

• Note matching of enter/start annotations
– all possible exits must be annotated
– regions must be correctly nested
– C/C++ function names are automatically registered
– Fortran function/routine names undefined if not preregistered

376

POMP instrumentation

• Uses pragma/comment directives to annotate regions
C/C++: Fortran:
#pragma pomp inst init !POMP$ INST INIT
#pragma pomp inst begin(tsloop) !POMP$ INST BEGIN(tsloop)

#pragma pomp inst altend(tsloop) !POMP$ INST
ALTEND(tsloop)

#pragma pomp inst end(tsloop) !POMP$ INST END(tsloop)

• Directives ignored unless activated with skin -pomp
– all directives in module instrumented

• Current limitations
– instrumentation inactive until “inst init”
– no distinction of functions from other regions
– last region exit must be marked “end”, all others as “altend”
– doesn't support C99 _Pragma operator

189

377

Measurement configuration

• Example configuration
– EPK_GDIR=/work/$USER # archive location
– EPK_TITLE=app_$NP # experiment archive title
– EPK_SUMMARY=1 # runtime summarisation
– EPK_TRACE=0 # event trace collection

• New archive directory for each experiment
– $EPK_GDIR/epik_$EPK_TITLE
– contains intermediate data (e.g., trace files), log/config files and processed

analyses

• Configured automatically (overridden) by scan args

378

Default EPIK.CONF configuration file extract

E P I K configuration
– EPK_TITLE=a # experiment archive title [scan -e]
– EPK_SUMMARY=1 # runtime summarization [scan -s]
– EPK_TRACE=0 # event trace collection [scan -t]
– EPK_FILTER= # file listing functions to skip
– EPK_METRICS= # colon-separated list of metrics [-m]

E P I S O D E configuration
– ESD_PATHS=1024 # max. recorded call-paths
– ESD_FRAMES=32 # max. call-stack frames
– ESD_BUFFER_SIZE=100000 # definitions bytes

E P I L O G configuration
– ELG_BUFFER_SIZE=10000000 # trace bytes

190

379

Hardware counter metrics

• Available counters (and their interpretation) are platform/processor-specific
– considered separate root metrics in analyses

• Platform metrics specification
– defines convenient groups of metrics
– EPK_METRICS_SPEC=./METRICS.SPEC

• Group/list of counters to measure in experiment
– EPK_METRICS=POWER4_DC # data-cache
– EPK_METRICS=BGL_NETWORKS # torus & tree
– EPK_METRICS=PM_CYC:PM_INST_CMPL

or PAPI_TOT_CYC:PAPI_TOT_INS

380

Scalasca summary experiment with HWC
metrics

Count of packets
injected
into torus in -x direction?

191

381

CUBE algebra tools

• CUBE files can be compared/combined with some useful command
line tools

• Note that these work directly on CUBE files and not on archive
directories
– Reads CUBE2 & CUBE3 files, but only writes CUBE3 files

• General usage:
– cube3_tool [-o <output file>] <input file>

• If no output file is specified, tool.cube is generated

382

CUBE algebra tools (2)

• cube3_merge
– combines multiple analysis reports into integrated report
– merges metric, call-path & system trees
– takes metric severities from first available report
– e.g., combine measurements of sets of HWC metrics in summary report(s) with a

(non-HWC) trace analysis report into a “holistic” analysis report
% cube3_merge trace.cube summary_HWC[1234].cube

– Metrics listed in order of appearance in input reports
– User-defined hierarchies of measured & derived HWC metrics not yet

supported by CUBE3!

192

383

CUBE algebra tools (3)

• cube3_mean

– Can eliminate “measurement noise” by averaging the
results of several experiments

• cube3_cut [-p prune] [-r root]
– Creates a new CUBE file without pruned subtrees and/or containing only the

specified call tree node as new root(s)

• cube3_diff

– Calculates the difference of two experiments
– Useful to measure improvement/degradation due to a modification

384

Difference experiment:
JUMP – JUBL (different architectures)

193

385

Labs!

Lab: PAPI, TAU, Vampir, and Scalasca/KOJAK

386

Lab Instructions (for LLNL systems)

Get workshop.tar.gz using:

% wget
http://www.paratools.com/llnl09/workshop.tar.gz

Or

% cp
/usr/global/tools/tau/training/src/workshop.tar.gz
.

% tar zxf workshop.tar.gz

source /usr/global/tools/tau/training/src/tau.cshrc

OR

source /usr/global/tools/tau/training/src/tau.bashrc

in your .login file and then follow the instructions
in the README file.

194

387

Lab Instructions

To profile a code using TAU:

1. Change the compiler name to tau_cxx.sh,
tau_f90.sh, tau_cc.sh:
F90 = tau_f90.sh

2. Choose TAU stub makefile
% setenv TAU_MAKEFILE
/usr/global/tools/tau/training/tau-
2.18.2/bgp/lib/Makefile.tau-[options]

3. If stub makefile has –papi in its name, set
COUNTER[1-<n>] environment variables:
% setenv COUNTER1 GET_TIME_OF_DAY
% setenv COUNTER2 PAPI_L2_DCM
% setenv COUNTER3 PAPI_TOT_CYC … OR
% setenv TAU_METRICS TIME:PAPI_L2_DCM:PAPI_TOT_CYC

4. Build and run workshop examples, then run
pprof/paraprof

388

Support Acknowledgements

• Department of Energy (DOE)
– Office of Science contracts
– LLNL-LANL-SNL ASC/NNSA Level 3 contract
– LLNL ParaTools contracts

• Department of Defense (DoD)
– PET

• National Science Foundation (NSF)
– POINT

• University of Oregon
– A. Malony, A. Morris, K. Huck, W. Spear,

S. Biersdorff, A. Nataraj

• University of Tennessee, Knoxville
– Dr. David Cronk and Dr. Shirley Moore

• T.U. Dresden, GWT
– Dr. Wolfgang Nagel and Dr. Holger Brunst

• Research Centre Juelich
– Dr. Bernd Mohr, Dr. Felix Wolf

