
ParaTools	ThreadSpotter	
Optimization	Tutorial	–	In-Memory	Table	Lookups	

Executive	Summary	
ParaTools	ThreadSpotter	is	a	programmer’s	tool	that	analyzes	an	application	and	then	presents	a	list	of	high	
level	advice	(a.k.a	SlowSpots)	telling	the	programmer	where	and	how	to	change	the	application	to	improve	
its	performance.	

There	are	many	different	causes	for	poor	performance,	and	ParaTools	ThreadSpotter	focuses	on	finding	how	
the	limited	resources	of	modern	multi-core	processors	and	their	memory	hierarchies	are	used	by	the	
program.	Simple	changes	can	make	a	huge	difference	in	performance	and	scalability.	

In	this	paper	we	present	a	series	of	gradual	changes	to	a	sample	application.	The	changes	were	prompted	by	
advice	and	statistics	from	the	tool,	leading	to	a	46x	performance	boost	on	a	single	core,	and	more	than	83x	on	
an	8-core	system,	where	the	final	version	displays	almost	perfect	linear	scaling.	

	
	

2	
	

	

Overview	
This	is	a	tutorial	showing	typical	scenarios	and	techniques	when	working	with	ParaTools	
ThreadSpotter	to	improve	an	application’s	performance.	

In	a	modern	computer,	the	memory	system	components	contribute	to	a	large	part	of	the	
performance	characteristics	of	an	application:	

• The	memory	bus	is	responsible	for	transferring	data	from	the	memory	to	the	CPU	cores,	
and	this	bus	has	a	limited	bandwidth.	The	more	cores	there	are	demanding	data,	the	
higher	the	pressure	on	the	bus.	This	ultimately	puts	a	cap	on	application	performance.	

• Inside	the	CPU,	there	are	several	layers	of	small	but	fast	memories,	known	as	caches.	
The	caches	store	often	used	data	for	quick	access.	Since	the	size	of	the	caches	are	small,	
and	the	penalty	for	not	finding	your	data	in	the	cache	is	large,	the	application	
performance	is	highly	limited	by	how	well	it	manages	to	utilize	the	caches.	

• The	CPU	is	equipped	with	a	unit	called	a	prefetcher,	which	is	responsible	for	
anticipating	application	memory	accesses	and	populating	the	caches	ahead	of	time	with	
the	data	likely	to	be	requested	by	the	application.	It	inspects	the	application	data	flow	
and	has	an	easier	time	finding	patterns	in	the	traffic	when	the	application	performs	
regular	accesses.	

Locality	is	a	central	concept	denoting	a	favorable	characteristic,	which	in	this	context	should	be	
interpreted	as	it	is	cheaper	to	access	different	memory	locations	that	are	close	than	locations	
that	are	far	apart	(spatial	locality),	and	that	it	is	better	to	revisit	the	same	memory	location	
sooner	rather	than	later	(temporal	locality).	

Naïve	programming	will	often	cause	these	resources	to	be	sub-optimally	used,	and	ParaTools	
ThreadSpotter	helps	to	pinpoint	where	the	program	could	be	made	to	run	faster,	by	explaining	
how	to	be	leaner	with	respect	to	memory	bandwidth,	memory	latency,	and	cache	usage	and	
shows	where	the	governing	principles	are	broken.	

	This	is	done	by:	

• Enhancing	application	memory	access	regularity	to	help	the	hardware	prefetcher.	
• Enhancing	spatial	locality	to	help	minimize	the	amount	of	unused	data	transferred	

between	memory	and	cache,	and	to	minimize	the	amount	of	cache	space	occupied	by	
unused	data.	

• Enhancing	temporal	locality	by	suggesting	ways	to	reuse	data	while	it	remains	in	the	
cache.	

• Hide	memory	access	latencies	by	adding	prefetch	instructions.	

ParaTools	ThreadSpotter	
ParaTools	ThreadSpotter	analyzes	an	application’s	interaction	with	the	cache	and	the	memory	
subsystems.	It	can	analyze	single	thread	and	multithread	code	on	single-	and	multi-cores,	as	well	
as	multi-processor	machines.	

	
	

3	
	

ParaTools	ThreadSpotter	also	focuses	on	multi-threaded	issues	on	multi-cores	arising	from	
thread	interactions	and	communication	between	the	cores	and	caches	within	the	processor.	

It	consists	of	a	few	utilities:	

• A	sampler.	This	component	spies	on	the	application	and	collects	information.	
• A	reporter.	The	collected	information	is	analyzed	and	results	are	written	to	a	report.	
• A		graphical	user	interface	to	set	parameters	for	sampling	and	report	generation	
• Command	line	tools	to	do	the	same	thing	

In	addition,	a	regular	web	browser	is	used	to	read	the	reports.	The	reports	are	heavily	cross-
linked	to	allow	efficient	navigation	between	statistics,	advice	detail	and	source	code.	

Optimization	Workflow	
Optimization	is	an	iterative	process.	It	is	a	very	good	idea	to	first	establish	a	repeatable	test	
environment	where	the	execution	time	can	be	measured.	Then	it	is	easy	to	try	out	various	
changes,	and	see	their	effect.	

When	optimizing	an	application,	alterations	to	the	program’s	source	code	and	inherent	structure	
will	be	made,	and	these	changes	can	be	of	local	or	global	scope.	Optimization	sometimes	reduces	
legibility,	maintainability,	encapsulation	and	coherence.	It	may	introduce	redundant	code	and	
replicate	or	de-normalize	data.	It	is	generally	a	good	idea	to	prepare	for	this	and	to	agree	on	an	
acceptable	level.	

The	next	task	is	to	get	somewhat	acquainted	with	the	code.	After	sampling	the	application	for	
the	first	time,	spend	some	time	looking	through	ParaTools	ThreadSpotter’s	reports.	Briefly	go	
over	the	top	items	in	each	advice	category	to	see	whether	they	reference	related	code	
sections.	Usually,	resolving	the	advice	affects	structure	definitions	and	their	subsequent	use	
throughout	the	application,	so	it	is	worthwhile	to	browse	around	and	familiarize	yourself	with	
the	code	in	question.	

There	are	different	approaches,	but	one	that	works	fairly	well	is	to	look	for	signs	of	irregular	
accesses	(random	access	issues)	high	up	in	the	latency	issues	category,	and	see	if	those	can	be	
addressed.	That	will	increase	access	regularity	in	your	program,	which	will	help	the	processor	to	
anticipate	its	data	accesses.	

Then	move	to	look	for	cache	line	utilization	optimization	issues	and	incorrect	loop	order	issues,	
which	both	relate	to	lack	of	spatial	locality.	Throughout	the	memory	system,	data	travels	in	
chunks,	and	the	minimum	amount	that	is	fetched	and	stored	in	a	cache	is	known	as	a	cache	line,	
typically	64	bytes.	Making	use	of	all	data	in	a	cache	line	is	high	up	on	the	list	of	optimizations.	

After	that,	look	for	long-term	reuse	opportunities.	ParaTools	ThreadSpotter	suggests	applying	
common	reuse	techniques	through	the	blocking	and	loop	fusion	advice.	These	code	
transformations	promise	rewarding	returns	but	may	require	more	extensive	changes	to	loop	
and	function	structure.	The	resulting	effect	is	that	data	is	reused	multiple	times	while	it	is	still	
mapped	in	the	cache.	This	reduces	the	pressure	on	the	memory	bus.	

After	fixing	each	SlowSpot,	recompile	and	measure	the	performance	to	see	if	there	was	any	
performance	increase.	

	
	

4	
	

Then,	sample	the	application	anew,	prepare	new	reports	and	restart	the	process.	

	

Labs	Part	

Setting	Up	Your	Environment	
Please	load	the	LiveDVD	into	the	DVD-Drive	of	your	laptop	and	start	the	machine.	If	the	DVD-
Drive	is	the	first	item	in	your	boot	list	your	computer	will	automatically	boot	an	Ubuntu	Linux	
operating	system	from	the	DVD.	If	not	you	may	change	the	boot	order	by	either	creating	a	
temporary	boot	menu	(usually	by	pressing	F12	during	startup)	or	by	changing	your	BIOS	
settings.	

Ubuntu	will	ask	you	to	choose	your	language	first.		

The	LiveDVD	offers	the	opportunity	to	try	Ubuntu	without	installation.	Please	choose	this	
option	if	you	want	to	avoid	any	installation	on	your	hard	disk.	

As	a	next	step	you	will	be	prompted	for	login.		

Please	login	as	“demouser”.	Your	password	will	be	“demouser”	as	well.		

If		Linux	has	been	loaded	please	plug	the	usb	memory	stick	into	a	free	port.	The	directory	on	the	
stick	will	be	mounted	to	the	file	system	the	LiveDVD	has	established	in	memory.	

Open	a	console	window	and	move	to	the	memory	stick’s	mount	point	by	typing:	

demouser@ubuntu:~$	cd	/media		 	

type:	

demouser@ubuntu:/media$	ls		 	

You	will	see	a	subdirectory	which	is	named	as	your	memory	stick’s	volume	id.		

Move	to	that	subdirectory	by	typing:	

demouser@ubuntu:/media$	cd	/xxxxx.xxxxx				 	

Note:	xxxx.xxxx	has	to	be	replaced	by	your	memory	stick’s	volume	id	

Type:	

demouser@ubuntu:/media/xxxx-xxxx$	ls		 	

You	will	see	three	subdirectories	and	a	shell	script	called	“setup.sh”.	Please	source	the	script	by	
typing	

	
	

5	
	

	demouser@ubuntu:/media/xxxx-xxxx$	source	./setup.sh	 	

The	script	will	set	up	your	environment	by	updating	the	PATH	variable	in	order	to	include	the	
latest	ParaTools	ThreadSpotter	edition	which	is	installed	on	the	memory	stick.			

The	memory	stick’s	directory	structure	looks	as	follows:	

	

	

• The	directory	called	“ParaTools	ThreadSpotter”	contains	an	already	installed	version	of	
the	latest	ParaTools	ThreadSpotter	product.	

• The	“ParaTools	ThreadSpotter_install”	directory	contains	ParaTools	ThreadSpotter	
installers	for	Linux	and	Windows.	

• The	directory	“tutorial”	contains	source	files,	a	makefile	and	some	shell	scripts	you	will	
need	for	this	tutorial.	

Please	move	to	the	“tutorial”	directory	by	typing	

demouser@ubuntu:/media/xxxx-xxxx$		cd	tutorial	 	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$	

You	have	now	prepared	your	environment	for	starting	with	the	labs	part.	

	
	

6	
	

	

Example	Application	
The	application	is	an	example	of	a	memory	bandwidth	intensive	code	with	a	host	of	problems	in	
the	areas	outlined	above.		

The	application	models	an	in-memory	database	table,	and	a	queue	of	queries	against	that	table.	

Different	versions	of	the	code	implement	the	table	using	different	data	structures	and	ways	to	
represent	data	and	queries.	

The	different	versions	share	a	common	part	consisting	of	a	test	driver	and	data	structures.	The	
differences	between	different	versions	are	located	in	the	various	database_n*.hh	files.	

In	this	tutorial,	one	of	the	purposes	is	to	enable	a	detailed	comparison	between	different	source	
code	variants.	We	carefully	control	the	point	where	the	sampler	engages	and	disengages	.	This	is	
explained	in	the	Appendix,	and	the	scripts	in	the	source	distribution	also	do	this	for	you.	

Building	the	Example	Application	
In	order	to	discover	opportunities	for	performance	optimization	ParaTools	ThreadSpotter		
samples	binaries	of	an	application.	For	looking	up	related	lines	in	the	source	code	ParaTools	
ThreadSpotter	needs	to	make	use	of	references	included	in	the	binary’s	debug	information.	
Therefore	it	is	recommended	to	prepare	debug	builds	by	using	the	–g	compiler	option.	

Building	the	different	versions	of	the	example	application	is	straight	forward	because	an	already	
prepared	makefile	invokes	the	gcc	compiler	by	using	the	correct	compiler	flags	(-g	-O3).	

Please	type		

demouser@ubuntu:/media/0012-D687/tutorial$		make	all	 	

The	following	binaries	will	be	built:	

test1	test1b	test1c	test2	test3	test4	test4b	

(In	case	you	encounter	problems	in	building	the	examples	please	find	already	built	binaries	in	
the	directory	/media/xxxx-xxxx/tutorial/already_built/bin)	

	
	

7	
	

	

Lab	1	–	Baseline:	Standard	Doubly-Linked	List	of	Records	
The	baseline	code	uses	a	standard	C++	list	template,	std::list,	to	store	database	records.	

The	vital	part	of	the	original	version	looks	like	this:	

class database_1_linked_list_t : public single_question_database_t {
public:
 virtual void ask_one_question(query_t &query) const;
private:
 typedef std::list<car_t> cars_t;
 cars_t cars;
};

void database_1_linked_list_t::ask_one_question(query_t &query) const {
 cars_t::const_iterator i = cars.begin(), e = cars.end();
 for (; i != e; i++) {
 switch (query.query_type) {
 case 0: // count matching colors
 if (i->color == query.car.color)
 query.result++;
 break;
 case 1: // count same model but heavier than minimum weight
 if (i->model == query.car.model &&
 i->weight > query.car.weight)
 query.result++;
 break;
 }
 }
}

	

Please	execute	this	version	by	typing		

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test1	 	

The	program	will	run	as	many	complete	loops	as	possible	in	60	seconds	and	will	print	the	
median	execution	time.	

Question	1:	What	is	the	median	execution	time	of	the	program	version	“test1”?	

In	order	to	analyze	“test1”	we	now	will	sample	“test1”	with	ParaTools	ThreadSpotter.	

Please	type	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$		sample	--start-at-function	start_sampling		

--stop-at-function	stop_sampling	–o	test1.smp	–r	./test1	 	

If	you	look	at	the	sampler’s	output	messages	you	will	see	a	warning	that	the	number	of	samples	
would	not	be	enough	for	reliable	results.	The	warning	includes	a	recommendation	for	an	
adjusted	sample	period.	

Question	2:	How	many	samples	are	necessary	to	get	a	reliable	report?	

Please	follow	the	sampler’s	advice	and	start	a	new	sample	run	by	providing	the	sampler	with	the	
new	sample	period:	

	
	

8	
	

	demouser@ubuntu:/media/xxxx-xxxx/tutorial$		sample	--start-at-function	start_sampling		

--stop-at-function	stop_sampling	–s	<new	sample	period>	–o	test1.smp	–r	./test1	 	

You	will	now	find	a	ready	to	use	fingerprint	file	called	“test1.smp”	in	your	working	directory.	

Question	3:	What	is	the	reason	for	starting/stopping	sampling	at	functions	
start_sampling/stop_sampling?	

In	order	to	encounter	opportunities	for	optimizing	the	program	with	regard	to	the	target	
architecture	you	will	need	to	generate	a	report	based	on	the	sample	file.	

Please	type	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$	report	–c	2m	–i	./test1.smp	–o	test1-r.tsr		

	

ParaTools	ThreadSpotter’s	report	generator	will	create	a	report	named	“test1-r.tsr”	in	your	
working	directory.	
Note:	By	adding	the	–c	2m	option	to	the	command	line	we	are	forcing	the	generator	to	generate	
a	report	targeting	a	last	level	cache	with	a	cache	size	of	2Mb.	This	tutorial	is	set	up	to	have	a	
footprint	of	that	general	size.	If	you	had	not	added	this	cache	size	override	then	your	system’s	
actual	parameters	would	be	used	instead.	Depending	on	your	system’s	cache	size	you	might	not	
get	the	anticipated	result	for	this	programmed	tutorial.	

Question	4:	Why	should	you	always	start	optimizing	your	application	related	to	the	highest	
level	cache?	

In	order	to	open	the	report	in	your	browser	you	will	need	to	start	a	webserver	application	called	
“view”.	

Please	type	

	demouser@ubuntu:/media/xxxx-xxxx/tutorial$		view	–i	./test1-r.tsr	 	

The	command	above	will	open	the	report	in	your	standard	browser	(in	this	case	Firefox).	

Note:	Firefox	will	sometimes	tend	to	switch	to	its	offline	mode.	In	case	the	report	won’t	be	
displayed	please	change	the	mode	to	“online”	in	the	“File”	menu.		

The	report’s	first	page	will	show	that	“test1”	is	suffering	from	limited	bandwidth	as	well	as	
latency	and	locality	issues.	This	page	tells	you	that	the	program	has	potential	for	some	
improvements.	
Please	open	the	main	part	of	the	report	and	open	the	“Issue”	tab	of	the	“Summary”	window.	

Question	5:	What	is	the	dominant	issue	listed	under	the	“Latency	Issues”	tab?	

As	a	next	step	please	expand	the	“Statistics	for	instructions	of	this	issue”	as	shown	in	the	“Issue”	
window.	

Question	6:		What	is	the	meaning	of	“Access	randomness”	which	is	very	high	in	this	case?	

	
	

9	
	

Question	7:	What	fundamental	data	structure	is	the	cause	of	this	problem?	

Please	click	on	the	issue	in	the	“Summary”	window	and	have	a	look	where	it	occurs	in	the	source	
code.	
The	“Miss	ratio”	mentioned	in	the	“Statistics	for	instructions	of	this	issue”	shows	a	high	
percentage.	

Question	8:	What	is	the	reason	for	the	huge	amount	of	cache	misses?	

Question	9:	What	is	so	bad	about	cache	misses?	

Question	10:	What	are	the	options	to	avoid	the	prefetching	problem	in	this	case?	

After	running	and	sampling	the	program,	the	following	report	is	presented:			

	

The	first	page	shows	that	the	application	generally	suffers	from	being	limited	by	memory	
bandwidth,	and	also	that	it	is	negatively	affected	by	memory	latencies	and	exhibits	poor	data	
locality.	This	page	is	meant	for	the	programmer	to	get	an	overview	of	the	problems	affecting	the	
application,	and	at	a	glance	be	able	to	see	how	optimization	attempts	play	out.	

Entering	the	main	part	of	the	report	reveals	three	sub-windows,	which	contain	respectively:	

• Lists	of	issues,	loops	and	global	information	such	as	statistics	
• Issue	details,	loop	details	
• Annotated	source	code	

	
	

10	
	

	

In	the	first	version	of	the	example	program,	we	find	that	random	access	patterns	dominate	the	
latency	issue	tab.	Clicking	on	the	top	one	will	focus	the	source	code	frame	around	one	of	the	two	
query	sections,	and	the	issue	(shown	below)	details	fill	up	the	lower	left	panel.	

	

High	
randomness	

Low	
hardware	
prefetch	
probability	

	
	

11	
	

Execution	time,	
(Intel	Xeon	E5345):							
14	seconds	

	

In	this	case,	the	top	advice	in	the	Latency	section	tells	you	about	irregularity	among	the	memory	
accesses.	Advice	of	this	kind	points	to	the	accesses	to	the	fields	of	the	elements	in	the	main	data	
structure,	the	std::list	members,	and	these	items	are	apparently	accessed	in	a	non-contiguous,	
irregular	way.	

This	is	common	for	linked	lists	and	other	dynamic	data	structures.	Elements	are	allocated	
dynamically	and	as	the	heap	warms	up	it	becomes	fragmented.	New	allocations	reuse	free	slots	
and	this	tends	to	spread	out	these	elements	in	an	unpredictable	way	throughout	memory.	

A	cache	is	often	accompanied	by	a	unit	called	a	hardware	prefetcher.	Its	job	is	to	look	at	the	
application’s	memory	accesses	and	try	to	detect	a	pattern.	If	it	finds	a	pattern,	it	will	fetch	data	to	
the	cache	from	memory	just	ahead	of	the	time	when	that	data	is	needed.	If	successful,	this	hides	
much	of	the	memory	latency.	

More	than	anything	else,	it	is	access	randomness	that	affects	how	well	the	
hardware	prefetcher	will	work.	For	random	access	patterns,	the	prefetcher	will	
not	detect	any	prefetchable	patterns,	and	the	core	will	stall	while	waiting	for	
data	to	arrive.	

Consequentially,	the	statistics	for	the	issue	and	for	the	instructions	show	low	hardware	prefetch	
ratios	for	this	advice.	

	

Optional	task:	The	example	version	“test1b”	uses	an	intrusive	singly	linked	list	instead	of	the	
std::list	which	is	doubly	linked.	Test1b	is	further	modified	in	the	next	section.	
Sample	this	version,	generate	a	report	and	explore	the	difference	to	“test1”.	

	
	

12	
	

	

Lab	2	–	Adding	Prefetch	Hints	
As	the	ParaTools	ThreadSpotter	online	help	will	tell	you,	there	are	two	ways	to	deal	with	this	
situation.	Either	you	can	arrange	data	in	memory	in	such	a	way	that	the	hardware	prefetcher	can	
anticipate	the	access	pattern,	or	add	explicit	prefetch	instructions	yourself.	We	will	explore	both	
ways,	but	first	we	focus	on	the	latter	suggestion.	

Since	the	data	accesses	will	be	irregular,	the	hardware	prefetcher	will	be	inactive.	The	idea	is	to	
manually	add	special	prefetch	instructions	to	bring	data	into	the	cache	well	ahead	of	when	it	is	
needed.	How	much	in	advance	of	its	use	to	issue	this	instruction	is	a	function	of	how	busy	the	
processor	is	between	the	prefetch	and	the	subsequent	usage.	Assuming	that	the	latency	of	a	
memory	access	is	100	times	slower	than	the	CPU	cycle	time,	one	should	prefetch	data	at	least	
100	cycles	before	it	is	needed.	

If	all	you	do	in	your	loop	is	to	traverse	the	list	and	look	at	a	field	or	two,	it	is	not	enough	to	
prefetch	the	next	element.	You	need	to	be	further	ahead	with	prefetching,	but	this	introduces	a	
problem:	It	would	seem	that	you	need	to	see	the	preceding	node	to	be	able	to	find	the	address	to	
the	next	node,	and	that	this	appears	to	preclude	prefetching	anything	but	the	next	node	in	the	
list.	

The	solution	to	this	is	adding	an	auxiliary	field	whose	only	purpose	is	to	point	to	a	node	several	
steps	ahead.	Whenever	traversing	the	list,	in	addition	to	operating	on	the	data,	one	should	
prefetch	the	address	pointed	to	by	this	field.	

It	turns	out	that	adding	an	auxiliary	field	which	is	set	up	to	point	to	a	node	at	a	proper	distance	
isn’t	usually	such	a	tricky	thing.	The	extra	space	it	occupies	is	compensated	by	less	time	spent	
waiting	for	data.	

#define PREFETCH_DISTANCE 8

// Replacing std::list with homegrown linked list
struct node {
 struct node *next;
 struct node *prefetch_hint;
 ... // rest of fields
};

struct node *head;

// Traverse a list and populate prefetch hints to point
// ’PREFETCH_DISTANCE’ steps ahead.
void prepare_prefetch_hint()
{
 struct node *q, *p;
 int distance = PREFETCH_DISTANCE;
 for (p = head; p; p = p->next)
 if (0 == distance--) break;
 for (q = head; p && q; p = p->next, q = q->next)
 q->prefetch_hint = p;
}

struct node *p;
for (p = head; p != 0; p = p->next) {
 __builtin_prefetch(p->prefetch_hint); // gcc specific

 ... // use p-> fields
}

	
	

13	
	

Execution	time:	

6.5	seconds	

	
Replacing	the	linked	list	implementation	in	our	example	code	with	something	
similar	to	this	causes	the	execution	time	for	our	example	to	drop,	because	more	
fetches	can	be	in	flight	at	the	same	time,	and	data	is	already	being	fetched	when	
the	instruction	to	consume	data	is	encountered.	

Please	run	the	third	version	by	typing	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test1c	 	

Question	1:	What	is	the	median	execution	time	of	the	program	version	“test1c”?	

In	order	to	analyze	this	program	version	we	will	invoke	ParaTools	ThreadSpotter’s	sampler	and	
report	generator	via	its	graphical	user	interface	(but	the	same	results	can	be	achieved	using	
command	line	tools	just	like	in	the	first	lab).	

Please	open	ParaTools	ThreadSpotter’s	GUI	by	typing:	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$		ParaTools	ThreadSpotter	 	

	

Your	settings	should	look	similar	to	the	settings	shown	in	the	screenshot	above.	You	will	need	to	
tell	the	sampler	that	it	has	to	start	at	function	“start_sampling”	and	to	stop	at	function	
“stop_sampling”.	Additionally	it	will	be	necessary	to	decrease	the	initial	sample	period	as	we	did	

	
	

14	
	

when	sampling	“test1”.	Please	open	the	“Advanced	sampling	settings”	window	and	add	the	
parameters	as	shown	in	the	screenshot	below.		

	

The	last	step	before	starting	the	sampler	and	report	generator	is	to	set	the	target	cache	size	to	2	
Mb	as	the	fictitious	target	system’s	highest	level	cache	is	limited	to	that	size.	

	

Pushing	the	button	“Sample	application	and	generate	report”	will	do	the	sampling,	report	
generation	and	will	automatically	open	the	report	in	the	standard	browser.	

Please	open	the	“Latency	issues”	tab	and	explore	the	“Random	access”	issue	again.	

Question	2:	Is	the	prefetcher	working	efficiently	now?	

Question	3:	What	can	be	done	in	order	to	avoid	the	“Random	access”	issue?	

	
	

15	
	

Execution	time:	

1.0	seconds.	

	

Lab	3	–	Vector	of	Records	
Rerunning	the	sampling	and	report	generation	has	not	changed	much.	The	access	pattern	is	still	
irregular	and	the	hardware	prefetcher	is	still	not	working	well,	which	can	be	seen	from	the	low	
hardware	prefetch	probability	for	the	top	issue.	Adding	these	software	prefetch	instructions	
removes	some	of	the	CPU	stalls	(the	miss	rate	is	lower	than	before),	but	this	still	does	not	help	us	
with	fully	using	each	cache	line	(the	cache	line	utilization	is	still	poor).	

To	get	further	we	need	to	try	a	different	approach.	The	other	possible	remedy	suggested	by	the	
ParaTools	ThreadSpotter	online	help	is	to	revise	the	data	structure,	possibly	replace	it	with	
something	denser.	

Two	drawbacks	with	linked	lists	are	that	they	require	extra	fields	to	maintain	the	list	structure,	
and	that	the	spatial	locality	is	poor.	The	former	means	that	less	percentage	of	cache	space	is	
devoted	to	storing	useful	data.	The	latter	means	that	it	is	improbable	that	more	than	one	record	
is	used	from	each	cache	line	before	that	cache	line	is	evicted,	since	nodes	are	scattered	
throughout	a	large	part	of	the	memory,	and	that	two	items	close	in	the	sequence	are	located	in	
the	same	cache	line	is	improbable.	While	this	can	be	addressed	by	implementing	a	custom	
dynamic	memory	allocator	and	regularly	sort	nodes	physically	in	memory,	this	is	a	fragile	
solution.	

The	alternative	straightforward	solution	is	to	use	a	contiguous	storage	data	type,	such	as	a	plain	
old	array	or	std::vector.	

Replacing	the	linked	list	with	a	vector	has	other	noteworthy	implications	for	some	cases.	It	is	no	
longer	as	cheap	to	remove	or	insert	elements	in	the	middle	of	the	sequence,	but	random	access	
is	cheap,	and	maybe	more	importantly,	a	linear	traversal	trivially	engages	the	hardware	
prefetcher.	Such	a	traversal	causes	cache	misses	on	adjacent	cache	lines,	and	this	is	a	simple	
pattern	for	the	hardware	prefetcher	to	train	on.	Elements	are	also	placed	consecutively	and	no	
extra	housekeeping	pointers	are	needed.	

If	the	freedom	of	a	linked	list	is	required,	but	the	dataset	is	traversed	a	lot	during	some	phases	of	
the	execution,	it	is	sometimes	worthwhile	to	make	a	temporary	copy	of	the	elements	that	you	
are	interested	in,	stored	in	a	contiguous	way.	Then	use	the	temporary	copy	to	traverse	the	data.	
Throw	away	the	temporary	copy	when	you	are	done	traversing.	

For	our	case,	we	see	a	dramatic	reduction	in	running	time	when	replacing	the	
linked	list	with	a	std::vector.	

	

Please	run	the	version	“test2”	by	typing	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test2	 	

Question	1:	What	is	the	median	execution	time	of	the	program	version	“test2”?	

Please	let	ParaTools	ThreadSpotter	sample	“test2”	and	generate	a	report.	It	is	up	to	you	whether	
you	prefer	to	control	ParaTools	ThreadSpotter	via	gui	or	by	using	the	command	line	interface.	

	
	

16	
	

Question	2:	Has	the	“Random	access	issue”	been	solved	by	substituting	the	linked	list	by	a	
std::vector?		

Please	have	a	look	at	the	issues	listed	under	the	“Bandwidth	issues”	tab.		

Question	3:	What	dominant	issue	can	be	found	on	top	of	the	issues	list?	

Question	4:	Why	does	low	fetch	utilization	slow	down	the	program?	

Question	5:	What	lines	of	the	source	code	are	responsible	for	the	“Fetch	utilization	issue”?	

Question	6:	Do	you	have	any	idea	how	to	solve	this	problem?			

	
	

17	
	

The	manual	offers	an	
enumeration	of	the	
programming	
patterns	that	cause	
poor	fetch	
utilization,	including	
code	samples.	

	

	

Lab	4	–	Vectors	of	Hot	and	Cold	Fields	
After	a	sampling/report	generation	we	again	look	at	the	top	level	advice.	

	

Among	the	top	items	we	now	find	advice	to	address	a	few	cases	of	poor	spatial	
locality,	specifically	poor	fetch	utilization.	This	basically	means	that	if	the	
application	is	not	using	every	byte	in	a	cache	line	then	part	of	the	bandwidth	is	
consumed	to	transfer	unused	data.	The	same	unused	data	also	occupies	cache	
space	that	could	otherwise	be	used	for	useful	data.	This	makes	the	effective	
cache	size	smaller,	and	also	causes	less	useful	data	to	fit	in	each	cache	line.	

The	online	help	outlines	the	major	causes	of	poor	utilization,	and	offers	
examples	of	remedies.	

This	case	of	poor	fetch	utilization	complains	that	only	a	part	of	the	car_t	type	is	used	in	this	hot	
loop.	Several	of	the	other	fields	are	never	used,	but	still	use	space	in	the	cache	(Reg.	nr,	power.	
String	buffer	is	likely	allocated	elsewhere).	

The	car_t	structure:		
	

	

	

	

The	vector:	

Color Model Weight
Pointer	to		
Registration	
number

Engine	Power

String	(registration	number)

Color Model Weight
Pointer	to		
Registration	
number

Engine	Power

String	(registration	number)

Color Model Weight
Pointer	to		
Registration	
number

Engine	Power

String	(registration	number)

Color Model Weight
Pointer	to		
Registration	
number

Engine	Power

String	(registration	number)

	
	

18	
	

Execution	time:	

0.42	seconds.	

	

The	usual	fix	for	this	problem	is	to	streamline	the	data	layout.	In	this	case,	
consider	moving	each	field	to	its	own	vector.	That	way,	only	the	fields	being	
actively	used	will	be	fetched,	and	since	the	data	set	is	traversed	linearly,	all	
adjacent	entries	will	be	used.	No	external	alignment	holes	between	subsequent	
items	and	no	unused	data.	

Color

Model

Weight

Other	fields,
(never	fetched	
in	this	context)

One	logical	record,	split	
up	over	several	vectors

	

class database_3_hot_cold_vector_t : public single_question_database_t {
public:
 virtual void ask_one_question(query_t &query) const;
private:
 // Primary database for the cases that infrequently fields are requested
 typedef std::vector<car_t> cars_t;
 cars_t cars;
 // cached dense copies of hot fields
 std::vector<color_t> colors;
 std::vector<model_t> models;
 std::vector<double> weights;
};

void database_3_hot_cold_vector_t::ask_one_question(query_t &query) const {
 for (int i=0; i != cars.size(); i++) {
 switch (query.query_type) {
 case 0: // count matching colors
 if (colors[i] == query.car.color)
 query.result++;
 break;
 case 1: // count same model but heavier
 if (models[i] == query.car.model && weights[i] > query.car.weight)
 query.result++;
 break;
 }
 }
}

	

	
	

19	
	

	
The	report	does	offer	some	additional	hints	of	this	problem.	Consider	
the	issue	statistics	diagram	for	the	top	“fetch	utilization”	issue.	The	red	
dashed	line	indicates	how	the	fetch	ratio	would	change	if	the	fetch	
utilization	(blue)	could	somehow	be	improved	to	100%.	We	will	
revisit	this	graph	in	the	next	section.	

	

	

	

	

	

Please	run	“test3”	by	typing	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test3	 	

Question	1:	What	is	the	median	execution	time	of	the	program	version	“test3”?	

Please	sample	“test3”	and	generate	a	report.	
You	will	notice	that	the	“Fetch	utilization”	issues	have	been	turned	into	“Fetch	hot-spots”.	

Question	2:	What	is	a	“Fetch	hot-spot”?	

Question	4:	What	opportunities	does	ParaTools	ThreadSpotter	suggest	for	further	
improvements?	

Question	5:	What	is	the	meaning	of	“spatial	locality”?	

Question	6:	What	is	the	meaning	of	“temporal	locality”?	

	

	
	

20	
	

	

Lab	5	–	Blocking	
We	perform	another	round	of	sampling	and	report	generation.	

Now	we	find	that	the	advice	to	fix	poor	fetch	utilization	has	been	changed	into	hot-spots.	A	hot-
spot	is	reported	for	instructions	which	use	a	lot	of	bandwidth,	but	have	otherwise	regular	access	
patterns	and	most	of	the	data	is	put	to	use	at	least	once	before	the	cache	line	is	eventually	
evicted.	

	

The	statistics	show	that	the	fetch	utilization	is	100%,	and	comparing	
the	fetch	ratio	graph	we	see	that	the	fetch	ratio	has	gone	down	to	very	
close	to	what	was	hinted	in	the	previous	step.	These	kind	of	predictive	
capabilities	are	important	to	help	the	programmer	judge	the	impact	of	
a	change	before	undertaking	it.	

Now	that	we	have	addressed	all	the	spatial	reuse	opportunities,	what	
are	left	in	the	issue	list	are	different	advices	to	apply	blocking,	both	
with	respect	to	the	query	data,	as	well	with	respect	to	the	car	data.	

	
	

21	
	

	

Blocking	is	a	general	term	suggesting	working	on	the	data	in	smaller	chunks,	and	using	that	data	
many	times	over	before	moving	on	to	the	next	chunk.	As	there	are	many	different	data	
structures	in	this	case,	blocking	can	be	performed	in	a	few	different	ways.	

The	common	idea	is	to	break	up	data	into	small	enough	chunks	that	each	chunk	fits	in	the	target	
cache.	If	there	are	multiple	data	sets,	there	are	typically	many	different	ways	one	or	more	of	
them	can	be	subdivided	and	subject	to	blocking.	The	common	idea	is	that	the	total	footprint	of	
active	subsets	of	all	data	sets	needs	to	fit	in	the	available	cache	memory.	

As	an	example	of	this	technique,	consider	this	nested	loop	structure:	

 for (int j = 0; j < size_j; j++) {
 for (int i = 0; i < size_i; i++) { // Split this loop
...
 // Do something indexed by i, and possibly j
 sum += a[i];
 }
 }

This	will	(if	size_i	is	large	enough)	repeatedly	fetch	the	elements	of	the	vector	a.	The	general	
recipe	for	blocking	is	to	split	one	of	the	inner	loops	to	outside	the	outer	loop:	

 for (int ii=0; ii < size_i; ii += BLOCK_FACTOR) { // ... like this
 int limit = min(ii + BLOCK_FACTOR, size_i);

 for (int j = 0; j < size_j; j++) {
 for (int i = ii; i < limit; i++) { // and this
 // Do something indexed by i, and possibly j
 sum += a[i];
 }
 }
 }

	
	

22	
	

Execution	time:	

0.31	seconds.	

This	will	allow	subsections	of	vector	a	to	remain	in	the	cache	for	repeated	executions	of	the	j	
loop.	

In	our	example,	we	have	a	list	of	queries	against	the	database.	The	queries	may	
arrive	on	a	queue	from	network	connections	or	other	parts	of	the	application.	
Rather	than	processing	each	query	by	itself,	we	may	take	a	block	of	queries	and	
process	each	of	them	in	parallel	against	the	database.	That	way	the	total	
number	of	memory	fetches	will	be	reduced.	

This	idea	can	be	implemented	in	different	ways.	Either	we	can	make	one	traversal	through	the	
database,	and	for	each	record	process	all	of	our	queries,	or	we	can	break	up	the	database	
traversal	into	sub	ranges,	and	work	on	one	such	sub	range	at	a	time,	traversing	it	once	for	each	
query.	The	latter	is	more	efficient	in	this	case,	since	traversal	of	sequentially	stored	vectors	is	
very	efficient	and	we	want	to	have	as	long	stretches	as	possible.	After	all	queries	have	had	
partial	results	recorded	from	the	current	sub	range,	then	we	advance	to	the	next	block	of	
database	records	and	resume	processing	our	queries	against	that	block.	

Color

Model

Weight

Other	fields,
(never	fetched	
in	this	context)

Sub	range	of	the	
database;	A	block	of	
records

Query QueryQuery Query Query...

Available	queries

Query	queue

Pr
oc
es
s	a

ll	
qu

er
ie
s

sim
ul
ta
ne

ou
sly

	

In	this	case	we	opted	to	break	up	the	database	in	chunks	of	BLOCK_FACTOR	elements,	but	also	
to	group	similar	queries	together	into	categories,	and	work	on	each	database	sub	range,	one	
category	at	a	time.	This	may	further	have	helped	reduce	cache	pressure	thanks	to	not	involving	
too	many	record	fields	at	the	same	time.	

	
	

23	
	

#define BLOCK_FACTOR 1000

void database_4_blocking2_t::ask_questions(queries_t &queries) const {
 std::vector<query_t*> query_0, query_1;
 for (int j=0; j < queries.size(); j++) {
 query_t &query = queries[j];
 switch (query.query_type) {
 case 0:
 query_0.push_back(&query);
 break;
 case 1:
 query_1.push_back(&query);
 break;
 }
 }

 for (int ii=0; ii < cars.size(); ii += BLOCK_FACTOR) {
 int limit = min(ii + BLOCK_FACTOR, cars.size());

 // query type 0
 for (int j = 0; j < query_0.size(); j++) {
 query_t &query = *query_0[j];
 for (int i = ii; i < limit; i++) {
 if (colors[i] == query.car.color)
 query.result++;
 }
 }

 // query type 1
 for (int j = 0; j < query_1.size(); j++) {
 query_t &query = *query_1[j];
 for (int i = ii; i < limit; i++) {
 if (models[i] == query.car.model &&
 weights[i] > query.car.weight)
 query.result++;
 }
 }
 }
}

If	the	number	of	queries	to	be	processed	as	a	batch	becomes	too	large,	they	too	could	outgrow	
the	available	cache	space.	Again,	this	could	be	dealt	with	in	the	same	way,	by	selecting	a	smaller	
number	of	queries	to	work	through	the	database	fragments.	

Please	execute	“test4”	first.	This	blocking	approach	processes	chunks	of	database	records.	

Please	run	“test4”	by	typing	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test4	 	

Question	1:	What	is	the	median	execution	time	of	the	program	version	“test4”?	

The	program	version	“test4b”	groups	the	database	records	as	well	as	the	query	types.	

Please	run	“test4b”	by	typing	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test4b	 	

Question	2:	What	is	the	median	execution	time	of	the	improved	program	version	“test4b”?	

	
	

24	
	

Please	sample	“test4b”	and	generate	a	report.	Already	the	first	page	will	indicate	that	there	are	
no	significant	bandwidth	and	locality	issues	left.	Memory	latency	has	been	improved	
significantly.	

Opening	the	report	you	won’t	find	any	“Slowspot	Issues”	any	more	except	“Fetch	hot-spot”.	

There	are	only	a	few	minor	“Opportunity	Issues”	left.		

Question	3:	What	does	“blocking”	mean?	

Question	4:	How	do	you	determine	a	reasonable	blocking	factor?	

Question	5:	Is	blocking	always	possible?	

	
	

25	
	

	

Scalability	
We	have	already	measured	the	single	instance	performance	improvements	for	each	
improvement	step.	Now,	being	lean	has	another	benefit:	Better	scalability.	The	reasons	are	
simple:	the	more	parallel	activity	in	a	system,	the	easier	it	is	to	saturate	the	available	memory	
bus	bandwidth.	If	memory	bandwidth	is	not	preserved,	then	total	throughput	will	suffer.	

To	gauge	this	effect,	we	measure	the	execution	time	when	deploying	more	instances	of	the	
program	at	the	same	time.	The	table	shows	the	wall-clock	time	for	all	parallel	runs	to	finish,	in	
seconds	(all	measurements	are	made	on	a	Dual	Intel	Xeon	E5345	Quad	Core):	

#	cores:	 1	 2	 3	 4	 5	 6	 7	 8	
1	–	Linked	list	 14 16 18 20 23 24 28 30
2	–	Prefetched	linked	list	 6.5 8.0 9.7 15 16 17 18 19
3	–	Vector	 1.0 1.3 2.2 3.9 4.0 4.3 4.5 4.6
4	–	Several	vectors	 0.42 0.44 0.59 0.80 0.97 1.0 1.1 1.2
5	–	Blocked	 0.31 0.32 0.31 0.31 0.30 0.31 0.34 0.37
	

And	the	same	information	expressed	as	normalized	throughput:	

#	cores:	 1	 2	 3	 4	 5	 6	 7	 8	
1	–	Linked	list	 ≡ 1 1.8 2.4 2.8 3.1 3.5 3.5 3.7
2	–	Prefetched	linked	list	 2.2 3.5 4.4 3.8 4.5 5.1 5.4 5.9
3	–	Vector	 14 22 19 15 18 20 22 25
4	–	Several	vectors	 34 63 72 71 73 85 93 98
5	–	Blocked	 46 89 138 185 232 277 293 309
	

Notice	how	the	first	four	program	versions	level	out	after	just	a	few	instances,	and	offer	very	
little	extra	performance	as	more	cores	are	used.	The	first	two	versions	are	mostly	limited	by	the	
memory	latency.	The	next	two	versions	do	better	but	are	still	bandwidth	limited.	

Only	the	last	version	scales	almost	linearly	with	number	of	cores.	This	is	due	to	its	preservation	
of	bandwidth	through	reuse	of	data.	

	
	

26	
	

	

If	your	laptop	has	been	equipped	with	either	a	multicore	cpu	or	multiple	cpus	on	board	you	may	
test	the	scalability	of	the	different	example	program	versions	by	using	the	shell	script	“run-
many.sh”.	It	will	print	out	the	median	execution	times	for	1	to	n	started	instances	of	a	program	
(n=number	of	cores/single	core	cpus).		

	Please	type	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$		run-many.sh	./test1	 	

and	compare	the	output	with	

demouser@ubuntu:/media/xxxx-xxxx/tutorial$		run-many.sh	./test4b	 	

	

Question	1:	What	is	the	reason	for	the	improved	scalability?	

Summary	
Based	on	advice	from	ParaTools	ThreadSpotter,	we	have	implemented	a	series	of	changes	to	a	
simple	table	lookup	mechanism.	We	have	seen	how	different	data	representations	and	different	
data	access	patterns	may	have	a	large	impact	on	application	performance	and	scalability.	And	
we	have	achieved	magnitudes	better	performance	with	relatively	moderate	changes.	

The	golden	rule	is	to	ensure	that	all	closely	placed	data	is	used	and	reused	as	much	as,	and	as	
soon	as	possible.	If	there	is	regularity	in	the	application’s	access	patterns,	exploit	it.	Otherwise	
seek	to	change	the	program	into	one	with	such	properties.	

The	studied	application	is	memory	bound	and	therefore	responds	very	well	to	this	treatment.	
This	is	also	the	case	of	many	numerical	applications	with	large	datasets	that	are	repeatedly	
traversed.	

	
	

27	
	

	

Appendix	I	–	Controlling	the	Point	for	Attach	and	Detach	
As	mentioned,	for	the	purpose	of	this	test	we	want	to	control	exactly	when	the	sampler	is	active.	

We	add	a	dummy	function	for	each	point	in	the	code	where	we	want	to	be	able	to	attach	or	
detach.	To	prevent	the	function	from	being	inlined	or	optimized	away,	we	use	two	compiler	
specific	constructs:	

extern "C" __attribute__((noinline)) // gcc syntax
void start_sampling()
{
 asm volatile(""); // gcc syntax
}

extern "C" __attribute__((noinline)) // gcc syntax
void stop_sampling()
{
 asm volatile(""); // gcc syntax
}

int main() {
 // set up data
 // ...

 start_sampling();
 // code to be sampled
 // ...
 stop_sampling();

 // clean up
 // ...
 return 0;
}

Now,	the	sampling	can	be	started	like	this:	

$ sample --start-at-function start_sampling \
 --stop-at-function stop_sampling -r ./test-binary

By	using	this	technique	we	create	an	environment	in	which	we	can	disregard	initializations	and	
clean-up	code,	to	enable	both	completely	repeatable	and	comparable	runs	to	be	measured.	

	
	

28	
	

	

Appendix	II	–	Answers	and	Explanations	

Lab	1	
Question	1:	What	is	the	median	execution	time	of	the	program	version	“test1”?	

Answer:	Depending	on	your	hardware	you	will	most	likely	get	a	medium	execution	time	in	the	
range	of	11.5	seconds	to	12.5	seconds.	
	
Question	2:	How	many	samples	are	necessary	to	get	a	reliable	report?	
Answer:	10000	samples.	
	
Question	3:	What	is	the	reason	for	starting/stopping	sampling	at	functions	
start_sampling/stop_sampling?	

Answer:	In	order	to	guarantee	comparable	sample	conditions	for	all	our	test	programs	we	need	
to	ensure	not	to	sample	for	instance	the	initial	parts	of	the	programs	which	could	differ	
regarding	their	execution	times.	Appendix	I	describes	how	to	use	dummy	functions	for	
controlling	the	sampler’s	attach-	and	detach-points.				
	
Question	4:	Why	should	you	always	start	optimizing	your	application	related	to	the	highest	
level	cache?	

Answer:	The	highest	level	cache	is	the	one	of	most	capacity.	Usually	the	memory	footprint	of	an	
application	is	not	small	enough	in	order	to	fit	in	the	first	level	cache.	In	contrast	the	highest	level	
cache	will	be	able	to	store	a	huge	amount	of	the	application’s	data.	That	means	that	optimizing	
regarding	the	highest	level	cache	will	show	most	significant	improvements.		
	
Question	5:	What	is	the	dominant	issue	listed	under	the	“Latency	Issues”	tab?		

Answer:	It’s	a	“Random	access”	issue.	All	issues	are	listed	ordered	by	severity.	The	“Random	
access”	issue	can	be	found	on	top	of	the	list.	
	
Question	6:		What	is	the	meaning	of	“Access	randomness”	which	is	very	high	in	this	case?	

Answer:	The	access	to	data	is	very	irregular.	The	prefetcher	is	not	able	to	detect	patterns	in	
order	to	determine	the	data	that	will	be	used	next.	Therefore	it	is	working	inefficiently.	
	
Question	7:	What	fundamental	data	structure	is	the	cause	of	this	problem?	

Answer:	In	this	case	the	linked	list	is	responsible	for	the	problem.	In	general	pointer	chasing,	
dynamically	allocated	chained	structures	like	trees,	graphs	and	lists	tend	to	distribute	data	
randomly	in	memory.	

Question	8:	What	is	the	reason	for	the	huge	amount	of	cache	misses?	

Answer:	If	the	prefetcher	is	not	working	efficiently	the	likelihood	that	requested	data	has	not	
been	cached	increases.	A	fetch	to	the	cache	will	more	often	end	up	in	a	miss.		

Question	9:	What	is	so	bad	about	cache	misses?	

	
	

29	
	

Answer:	The	cpu	stalls	for	a	long	time	while	waiting	for	data	to	be	transferred	from	main	
memory	to	the	cache.	

Question	10:	What	are	the	options	to	avoid	the	prefetching	problem	in	this	case?	

	Answer:	In	order	to	avoid	the	prefetching	problem	it	would	be	possible	either	to	add	prefetch	
instructions	to	the	code	or	storing	the	data	in	a	way	that	traversals	will	be	easier	to	prefetch.	

Lab	2	
Question	1:	What	is	the	median	execution	time	of	the	program	version	“test1c”?	

Answer:	Depending	on	your	hardware	you	will	most	likely	get	a	medium	execution	time	in	the	
range	of	11.0	seconds	to	12.0	seconds.	It	will	probably	be	slightly	faster	than	“test1”	
	
Question	2:	Is	the	prefetcher	working	efficiently	now?	

Answer:	The	prefetcher	is	definitely	working	slightly	better	because	of	the	implemented	
prefetch	statements	but	is	still	far	from	working	efficiently.	You	will	see	a	positive	effect	of	a	
slightly	lower	miss-fetch	ratio	because	of	a	little	better	prefetch	probability.	

Question	3:	What	can	be	done	in	order	to	avoid	the	“Random	access”	issue?	

Answer:	As	we	have	already	tried	to	solve	the	problem	by	including	software	prefetch	
statements	the	only	option	left	is	to	substitute	the	linked	list	by	another	more	prefetcher	
friendly	data	structure	like	a	simple	array	or	a	std::vector.	

Lab	3	
Question	1:	What	is	the	median	execution	time	of	the	program	version	“test2”?	

Answer:	 The	 execution	 time	 went	 down	 dramatically.	 Your	 tests	 will	 probably	 show	 results	
around	0.5	seconds.	

Question	2:	Has	 the	 “Random	access”	 issue	been	 solved	by	 substituting	 the	 linked	 list	with	 a	
std::vector?	

Answer:	Yes,	the	“Random	access”	issue	has	been	solved.	You	will	find	no	issue	listed	under	the	
“Latency	issues”	tab	any	more.	

Question	3:	What	dominant	issue	can	be	found	on	top	of	the	issues	list?	

Answer:	The	most	important	issue	to	solve	is	a	“Fetch	utilization”	problem	now.	

Question	4:	Why	does	low	fetch	utilization	slow	down	the	program?	

Answer:	If	the	cache	lines	only	partially	consist	of	data	used	by	the	program	a	lot	of	valuable	
cache	space	is	filled	up	with	useless	data.	In	addition	the	useless	data	also	has	to	be	transferred	
from	main	memory	to	the	cache	and	will	require	bandwidth	unnecessarily.		

Question	5:	What	lines	of	the	source	code	are	responsible	for	the	“Fetch	utilization	issue”?	

Answer:		database_2_vector.hh,	line	37	and	line	41	if (i->color == query.car.color)
and			if (i->model == query.car.model && i->weight > query.car.weight)	

	
	

30	
	

Question	6:	Do	you	have	any	idea	how	to	solve	this	problem?	

Answer:	In	general	splitting	complex	structure	into	sub-structures	could	solve	issues	like	this.	In	
this	case	splitting	the	“car_t”	structure	into	multiple	vectors	would	improve	the	cache	line	
utilization.	Only	vectors	containing	the	“usable”	data	would	be	copied	to	the	cache.	

Lab	4	
Question	1:	What	is	the	median	execution	time	of	the	program	version	“test3”?	

Answer:	The	median	execution	time	will	be	probably	about	0.4	seconds.		

Question	2:	What	is	a	“Fetch	hot-spot”?	

Answer:	A	“Fetch	hot-spot”	issue	will	be	reported	when	ParaTools	ThreadSpotter	has	
encountered	a	location	which	is	responsible	for	an	exceptionally	large	number	of	cache	line	
fetches.			

Question	4:	What	opportunities	does	ParaTools	ThreadSpotter	suggest	for	further	
improvements?	

Answer:	Spatial/temporal	blocking.	

Question	5:	What	is	the	meaning	of	“spatial	locality”?	

Answer:	Spatial	locality	means	that	a	program	is	using	data	which	is	located	in	memory	close	to	
the	already	used	data.	Because	chunks	of	data	are	loaded	into	the	cache	it	is	most	likely	that	data	
located	close	to	recently	requested	data	will	also	reside	in	the	cache.		Spatial	blocking	can	help	to	
improve	spatial	locality.			

Question	6:	What	is	the	meaning	of	“temporal	locality”?	

Answer:	Temporal	locality	means	that	a	program	is	reusing	recently	used	data	again.	The	
likelihood	that	the	data	is	still	in	the	cache	is	dependent	on	the	time	between	the	two	accesses.	
Temporal	blocking	may	improve	temporal	locality.	

Lab	5	
Question	1:	What	is	the	median	execution	time	of	the	program	version	“test4”?	

Answer:	The	median	execution	time	will	probably	about	0.5	seconds.	

Question	2:	What	is	the	median	execution	time	of	the	improved	program	version	“test4b”?	

Answer:	You	will	probably	see	an	improved	median	execution	time	of	about	0.3	seconds.	

Question	3:	What	does	“blocking”	mean?	

Answer:	Rearranging	algorithms,	specifically	the	order	or	nesting	of	loops,	to	focus	on	working	
on	smaller	subsets	of	the	data.	The	idea	is	to	partition	the	data	set	into	small	enough	fractions	
that	will	fit	in	the	target	cache.	Then	change	the	algorithms	to	read	and	update	that	data	a	
number	of	times	before	letting	them	be	evicted	from	the	cache.	

Question	4:	How	do	you	determine	a	reasonable	blocking	factor?	

	
	

31	
	

Consider	the	available	cache	space,	and	look	at	the	fetch	rate	curve.		The	place	where	the	fetch	
rate	curve	gets	close	to	0	is	the	active	footprint	of	the	algorithm.	The	relationship	of	this	point	
compared	to	the	cache	size	gives	you	a	factor	by	which	you	need	to	reduce	your	current	
footprint.	

Note	that	this	factor	applies	to	all	data	sets	that	are	being	touched.	Guided	by	this	factor	and	
other	knowledge	of	your	program,	you	need	to	figure	out	how	much	to	reduce	and	block	each	
data	set.	

Question	5:	Is	blocking	always	possible?	

Applying	blocking	invariably	means	that	you	will	be	altering	the	order	of	traversal	of	elements	in	
your	data	sets.	This	may	not	always	be	possible.	As	a	basic	observation,	if	the	changed	code	
mandates	a	different	order	of	say	a	read	and	a	write	operation	to	the	same	data,	the	new	
program	will	have	a	different	meaning	than	the	old	one.	So-called	loop	carried	dependencies	(or	
just	data	dependencies	for	short)	may	therefore	prevent	you	from	using	blocking	techniques.	

Sometimes	it	is	possible	to	find	non-regular	or	oblique	spatial	decompositions	that	allow	you	to	
succeed	in	finding	blocking.	Sometimes	it	is	not	possible,	and	in	that	case	you	would	have	to	
revisit	your	algorithm	seeking	alternative	calculation	schemes,	possibly	with	different	numerical	
properties.	

Scalability	
Question	1:	What	is	the	reason	for	the	improved	scalability?	

Answer:	Temporal	blocking	means	significantly	reduced	need	to	re-fetch	data.	Due	to	
minimizing	the	bandwidth	requirement	of	the	application	the	cpus/cores	do	not	stall	even	if	
many	instances	share	the	bus	system.		

	
	

32	
	

	

Appendix	III	–	Issues	Discovered	by	ParaTools	ThreadSpotter	
	
	

SlowSpot	Issues	 Opportunity	Issues	

	 Fetch	utilization		 	 Spatial	blocking		

	 Write	back	utilization		 	 Temporal	blocking		

	 Communication	utilization		 	 Spat/temp	blocking		

	 Inefficient	loop	nesting		 	 Loop	fusion	

	 Random	access		 	 Non-temporal	data	

	 Prefetch:	too	close		 	 Non-temporal	store	possible	

	 Prefetch:	too	distant	 	 Fetch	hot-spot	

	 Prefetch:	unnecessary		 	 Write-back	hot-spot	

	 False	sharing		 	 Communication	hot-spot		

	

	

	

